Historic, Archive Document
Do not assume content reflects current scientific knowledge, policies, or practices.

SUGARBEET RESEARCH

1998 REPORT

FOREWORD

SUGARBEET RESEARCH is an annual compilation of progress reports concerning research by U. S. Department of Agriculture, Agricultural Research Service investigators and other cooperators who are engaged in sugarbeet research. The report was assembled and produced at the expense of the Beet Sugar Development Foundation, and is for the sole use of its members and the cooperators. Much of the data has not been sufficiently confirmed to justify general release and interpretations may be modified with additional experimentation. This report is not intended for publication and should not be used for cited reference nor quoted in publicity or advertising. Reproduction of any portion of the material contained herein will not be permitted without the specific consent of the contributor and the Beet Sugar Development Foundation.

The report presents results of investigations strengthened by contributions received under Cooperative Agreement between the USDA Agricultural Service and the Beet Sugar Development Foundation, along with the California Beet Growers Association, the Western Joint Research Committee, the Sugarbeet and Education Board of Minnesota and North Dakota, and Texas A \& M University.

Trade names occur in this report solely to provide specific information and do not signify endorsement by the U. S. Department of Agriculture, Texas A \& M University, the Beet Sugar Development Foundation or any of the cooperating organizations.

CONTENTS

SECTION A -- SALINAS, CALIFORNIA
Contents Al
Abstracts of Papers, 1998 A3
PROJECTS 210, 211 and 215
Development of Breeding Lines and Germplasm A13
Index of Variety Trials A18
PROJECTS 203 and 281
Specificity of TAS-ELISA for beet necrotic yellow vein virus and its application for differentiating rhizomania resistance in field grown sugar beets A134
PROJECTS 203 and 281
Decline in Sugar Beet Yield in the Central United States: Possible Causes, Management and Future Studies A151
SECTION B -- FORT COLLINS, COLORADO
Contents B1
Abstracts of Papers Presented B7
PROJECT 903
Evaluation of Contributed Lines for Resistance to Rhizoctonia Solani, A Causal Fungus of Sugarbeet Root Rot B9
PROJECT 904
Evaluation of Contributed Lines for Resistance to Cercospora Beticola, A Causal Fungus of Cercospora Leaf Spot B12

CONTENTS

PROJECT 440
Rhizoctonia Root Rot Resistance and Development of Genetic Resistance in Sugarbeet B15
PROJECT 441
Cercospora Leaf Spot Research and Breeding for Cercospora/ Curly Top Resistance B21
PROJECT 443
Pre-Breeding: The Introgression of New Sources of Cercospora Leaf Spot Resistance from Beta Vulgaris spp. Maritima and Other Exotic Sources into Sugarbeet-Type Populations B33
SECTION C - PULLMAN, WASHINGTON
Contents C1
PROJECT 290
Status Report on the Beta Germplasm Collection Activities C3
SECTION D -- FARGO, NORTH DAKOTA
Contents D1
Publications D3
PROJECT 601
Characterization of Gene and Gene Products Involved in Cercospora Resistance in Sugarbet D6
PROJECT 610
Using Sugarbeet Clones to Produce Synthetic Lines with Resistance to Rhizoctonia Root Rot D7

CONTENTS

PROJECT 620

Polymerase Chain Reaction (PCR)-Based Detection of Aphanomyces Cochlioides Using Actin Gene Sequences D10
PROJECT 630
The Development of Dynamic Gene Pools from Beta Maritima Sources D18
PROJECT 642
Novel Fungal Pathogen for the Biological Control of the Sugarbeet Root Maggot D17
Identification of the Sucrose Metabolizing Enzymes Responsible for Sucrose Losses During Sugarbeet Development and Storage D22
SECTION E -- EAST LANSING, MICHIGAN
Contents E1
Sugar beet activities of the USDA-ARS East Lansing conducted in cooperation with Saginaw Valley Bean and Beet Farm during 1998 - Overview E3
PROJECT 741
Field Evaluation of Emergence I E3
Field Evaluation of Emergence II E6
Agronomic Evaluation of Smooth Root Releases and Prospective Releases E7
Agronomic Evaluation of Smooth Root Development and Prospective Rhizoctonia Resistance Releases and Hybrids of SP550 E9
PROJECT 710
Somatic Cell Selection E19

CONTENTS

PROJECT 711

In Vitro Systems for Sugarbeet Interaction with Rhizoctonia, Cercospera,
Pythium and Aphanomyces Pathogens of Beet E11
Notice of Release of SR95 Smooth Root Sugarbeet Germplasm E14
Notice of Release of EL51 Sugarbeet Germplasm with Resistance
to Rhizoctonia Crown and Root Rot E16
PROJECT 720
Use of Seed Mixtures of Rhizoctonia-Resistant and Susceptible
Sugarbeet Varieties for Control of Crown and Root Rot E17
PROJECT 721
$\begin{array}{ll}\text { Studies on Aphanomyces cochlioides seedling disease of } \\ \text { Sugarbeet Varieties for Control of Crown and Root Rot } & \text { E19 }\end{array}$

SECTION F - BUSHLAND, TEXAS

Contents F1
Publications F3
PROJECTS 503 and 507
Determination of Optimum Irrigation Regime and Water Use Efficiency of Sugar Beet Grown in Pathogen Infested Soil F7
PROJECT 506
Comparison of Serological Tests for the Detection of TwoSoilborne Sugar Beet VirusesF12

CONTENTS

SECTION G -- BELTSVILLE, MARYLAND

Contents G1
Publications G3
PROJECT 810
Gene Transfer to Optimize the Sucrose Storage Capacity of the Sugarbeet Taproot G8
PROJECT 811
Engineering Sugarbeets with Multiple Proteinase Inhibitor Genes for Enhanced Tolerance to the Sugarbeet Root Maggot G10
PROJECT 830
Sugar Beet Bioengineering for Cercospora Beticola Resistance and Decreased Susceptibility to Other Microbial Pathogens G12

SUGARBEET RESEARCH

1998 REPORT

Section A

U.S. Agricultural Research Station, Salinas, California

Dr. R.T. Lewellen, Geneticist
Dr. H.Y. Liu, Plant Pathologist
Dr. C. Obermeier, Plant Pathologist
Dr. W.M. Wintermantel, Plant Pathologist
Dr. G.C. Wisler, Plant Pathologist
Dr. M.H. Yu, Geneticist
Dr. J.E. Duffus, Collaborator

Cooperation:
Holly Sugar Company
Spreckels Sugar Division
California Beet Growers Association
California Industry Research Committee
Western Sugar Growers Research Committee

CONTENTS

I. ABSTRACTS OF PAPERS, 1998 A3
II. DEVELOPMENT OF BREEDING LINES AND GERMPLASM (210,211,215) by R.T. LEWELLEN
SUMMARIES
Breeding Lines CP01 \& CP02 A1 3
Breeding Line C26 A14
Breeding Lines C829-3, C831-3, C831-4, C833-5, C833-12, C859-8, C864-14, C867-1, C891-10, \& C911-4-7 A14
VARIETY TRIALS
Index of Variety Trials, Salinas, CA
1998, U.S. Agricultural Research Stn. A1 8
Evaluation of Multigerm Lines, Salinas Nondiseased Trial, 1498 A 22
Virus Yellows Trial, 1198 A25
Rhizomania Trial, 4798 A2 8
Evaluation of Source Populations, Salinas
Nondiseased Trial, 1698 A31
Virus Yellows Trial, 1398. A32
Rhizomania Trial, 4298 A33
Performance Under Powdery Mildew, 2698 A 34
Combined Resistance Breeding Lines, 3198 A 35
Evaluation of PI's \& Salinas Lines, 3298 A 37
Evaluation of Monogerm Populations \& Lines, Salinas
Nondiseased Trial, 1798 A40
Rhizomania Trial, 4898 A41
Evaluation of Experimental Hybrids
Nondiseased Trial, 1598, 1898, 1998, 2098 A 42
Virus Yellow Trial, 1298 A5 2
Rhizomania Trial, 4598, 4698. A 57
Evaluation of Commercial Hybrids WS/BTS/USDA Hybrids, 4498 A60
CBGA Coded Trial, 4398 A64
Variety Trials, Brawley, CA, 1997-98
Nondiseased Trials, B198, B398, B498 A 76
Nondiseased A5 Coded, B298 A81
Rhizomania Trials, B698, B798, B898 A85
Rhizomania A5 Coded, B598 A92
Rhizomania High Temp Survival, B998, B1098, B1198 A96
Observation and Disease Evaluation Trials Curly Top (BSDF), Kimberly, ID A103
Erwinia/Powdery Mildew of Lines, 2498 A108
Erwinia/Powdery Mildew of Hybrids, 2598 Al15
Cercospora Leaf Spot, Shakopee \& Ft. Collins Al 20
Virus Yellow Evaluation, Davis (S.R. Kaffka)
Beet Chlorosis Virus Eval., D197, D297 A1 22
Chicory Evaluation
Salinas, C197, C297, C397, C497, C198, C298 A1 26
Brawley, C197, C198 A1 32
III. Specificity of TAS-ELISA for beet necrotic yellow vein virus and its application for differentiating rhizomania resistance in field grown sugar beets $(203,281)$ by G.C. WISLER, R.T. LEWELLEN, J.L. SEARS, H.-Y. LIU and J.E. DUFFUS A134
IV. Decline in Sugar Beet Yield in the Central United States: Possible Causes, Management and Future Studies $(203,281)$ by G.C. WISLER A151

ABSTRACTS OF PAPERS PUBLISHED OR APPROVED FOR PUBLICATION, 1998

FRANCIS, S.A., M. REDFEARN, D.M. CHWARSZCZYNSKA, M.J.C. ASHER and R.T. LEWELLEN. Use of molecular markers in breeding for disease resistance in sugar beet (Beta vulgaris L.). Aspects of Applied Biology. 52: 279-285. 1998.

Disease resistance in sugar beet has been improved by conventional breeding, mostly based on the selection of resistant plants after field or glasshouse testing. However, there are still some diseases for which there is either no, or inadequate, resistance in commercial cultivars, mainly because the inoculation methods, and subsequent measurement of resistance are too difficult, slow or laborious to be used in a commercial breeding programme. In such cases, the use of molecular markers represents a means of selecting for disease resistance.

In this paper, the development and testing of an amplified fragment length polymorphism (AFLP) marker for beet necrotic yellow vein virus (BNYVV) resistance gene $R z$ is used as an example to show the advantages of marker-based selection for disease resistance. We have developed an AFLP marker linked 7.6 cM from $R z$ in coupling phase. The marker was used for a comparative study of the efficacy of marker-based tests for BNYVV resistance and an ELISA test, which measured virus content. The marker gave better discrimination of resistant from susceptible plants than the ELISA because the ELISA could not identify susceptible disease escape plants. Use of the marker in an investigation of different sources of BNYVV resistance showed that they did not all contain $R z$, suggesting that BNYVV resistance may be controlled by a range of resistance genes. The development of molecular markers specific for other resistance genes would allow the combination of many such genes in the same plant and would increase the durability of resistance to BNYVV.

KARASEV, A.V., O.V. NIKOLAEVA, R.F. LEE, G.C. WISLER, J.E. DUFFUS and W.O. DAWSON. Beet yellow stunt virus coat protein gene: expression in vitro and in vivo. Phytopathology. 88:1040-1045. 1998.

The beet yellow stunt virus (BYSV) genome contains at least nine open reading frames (ORF's) that code for proteins ranging from 6 to 66 kDa . Based on amino acid sequence comparisons, the coat protein (CP) was previously identified as the product of ORF7. We expressed the product of ORF7 in bacteria and confirmed that ORF7 codes for the BYSV CP by immunoblotting. BYSV is a phloem-limiting virus, and virus CP antigen of a quality sufficient for diagnostic antisera production has not been available. To produce BYSV antigen free of plant host contaminants, ORF7 was cloned into a pMAL bacterial expression vector. The resulting fusion protein was affinity-purified and used as an antigen to raise anti-BYSV CP antisera in rabbits and guinea pigs. Using these antisera, an indirect double-antibody sandwich (DAS) enzyme-linked immunosorbent assay (ELISA)-based diagnostic system was developed. This indirect DAS-ELISA format enabled reliable detection of BYSV in tissue extracts from virus-infected lettuce diluted up to 5,000 times. The diagnostic system developed may enable large-scale epidemiological studies of BYSV using simple serological techniques. The antisera raised had a titer exceeding 1×10^{5} in immunoblots and easily detected the $23.7-\mathrm{kDa}$ BYSV CP
in virus-infected lettuce and sowthistle plants. In these two plant species, BYSV CP was detected as two closely migrating bands during electrophoresis, which may suggest posttranslational CP modifications. To further characterize the BYSV CP gene, the 5'untranslated region (UTR) of the BYSV CP subgenomic RNA (sgRNA) was cloned and sequenced. The CP-encoding, approximately 1.9 -kb sgRNA has an AT-rich, 66 -nucleotide-long 5 '-UTR colinear to the genomic sequence upstream of ORF7.

LECOQ H., G. WISLER and M. PITRAT. Cucurbit viruses: the classics and the emerging. p. 126-142 in: McCreight, J. D., Proc. Cucurbitaceae 98; Evaluation and Enhancement of Cucurbit Germplasm. ASHS Press, Alexandria Va. 1998.

Viral diseases cause important economic losses in cucurbit crops throughout the world. In the major growing regions, cucurbit viruses represent a complex and changing pathosystem. Several viruses often develop, concomitantly or successively, severe epidemics within a single crop. Among the 35 well-characterized viruses infecting cultivated Cucurbitaceae some have been known for a long time (the classics) while others have been spreading and causing serious damage only recently (the 'emerging'). A brief description is provided for each of these viruses along with their distribution, and discussion of the threat they pose to cucurbit crop production. The availabilikty of resistances to these viruses in the four major cultivated cucurbit species (cucumber, melon, squash and watermelon) is also discussed.

LEWELLEN, R.T. Registration of 10 Sugarbeet Germplasm C890 Lines with Resistance to Rhizomania. Crop Sci. 38:902-903. 1998.

Sugarbeet (Beta vulgaris L.) germplasm lines C890-1, C890-2/3, and C890-4 through C890-11 (Reg. No. GP-190 to GP-191; PI 593701 to PI 593704, PI 595749 to PI 595750 , PI 593706 to PI 593707, and PI595751 to PI 595752)(Table 1) were developed by the USDA-ARS in cooperation with the Beet Sugar Development Foundation and the California Beet Growers Association and released in 1996. These lines have C790 (5) genetic background plus resistance to rhizomania caused by beet necrotic yellow vein virus (BNYVV). Each line in the C890 series had a different initial nonrecurrent source that had been identified as having resistance to rhizomania (2). C790 is a monogerm, O-type, self-fertile, genetic male-sterile facilitated random-mated population that had been improved by five cycles of the S_{1} progeny recurrent selection. C790 is believed to be uniformly susceptible to rhizomania. C790 is the source of several monogerm parental lines (1). The C890 lines are the monogerm counterparts to the multigerm C79 series (3). Lines in the C890 series will segregate for resistance to rhizomania and for monogerm, O-type, and genetic male-sterile traits. These lines should facilitate selection of rhizomania resistant, monogerm, O-type breeding and parental lines.

From the early-generation backcross lines that were subsequently released as C79-1 through C79-11 (3), plants resistant to rhizomania were selected and pair-crossed in the greenhouse under paper bags to genetic male-sterile, monogerm plants from C790. One or more backerosses were made to C 790 with resistant plants selected from each $\mathrm{BC}_{\mathrm{n}} \mathrm{F}_{1}$ generation. Resistance to rhizomania was determined in 4 -mo-old plants grown in BNYVV infested soil $(2,3)$. Under these conditions, escapes were common, which led to lower than expected frequency of resistant plants in the subsequent generation. Traits other than resistance to rhizomania were largely
disregarded. Thus, the C890 lines continue to segregate for multigerm types. Following the final backcrosses, resistant plants within each line were increased in bulk.

Table 1 lists the pertinent information for each line. As with the C79 series, sources of resistance included sugarbeet, Swiss chard, and weed and wild beet (B. vulgaris L. subsp. maritima). The allelism or relationship among these sources has not been fully determined, but some do appear to involve the same DNA markers (6). Line C890-8 with resistance from C50 appears to offer the greatest improvement in resistance to rhizomania over that conditioned by the $R z$ allele (2). In Imperial Valley (California) tests under combined effects of rhizomania and high temperature, the resistance factor or factors in C890-8 provided the highest level of protection and survivability (4).

LEWELLEN, R.T. Registration of C76-89-5 Parental Line of Sugarbeet. Crop. Sci. 38:905. 1998.

Sugarbeet (Beta vulgaris L.) parental line C76-89-5 (Reg. No. PL-37, PI593698) was developed by the USDA-ARS in cooperation with the Beet Sugar Development Foundation and the California Beet Growers Association. This line was released in 1996. C79-89-5 combines well with monogerm testers and for combined resistance to bolting and diseases that are prevalent in the western USA. It is adapted throughout California.

C76-89-5 is a multigerm, self-sterile line descended from the single full-sib (FS) family. The FS from which C76-89-5 was derived was one of six that were selected from a larger set and recombined to produce C76-89 (PI578087) released in 1993. These original FS families were obtained from pair crosses between individual plants of C31-89(2) crossed to individual plants from a line similar to C82(1). Following the initial FS progeny tests, selected FS families were increased and simultaneously crossed to a monogerm tester. These experimental hybrids were evaluated in trials at Salinas and Brawley, CA. Based on these trials, the increase of the FS that became C76-89-5 was selected. Following increase, this line underwent one cycle of individual plant selection for combined nonbolting tendency and multiple disease resistance. Twelve-month-old plants from an overwintered planting in soil highly infested with beet necrotic yellow vein virus (BNYVV), which causes rhizomania, were selected for nonbolting, root size and shape, and relative absence of foliar and root disease symptoms. At 6 mo of age, these plants had been inoculated with Erwinia carotovora (Jones) Bergey et al. subsp. betavasculorum Thomson et al. Natural infection with powdery mildew (caused by Erysiphe polygoni DC.) was not controlled. After the initial field selection for nonbolting and disease resistance, the beets were reselected based on individual root sucrose concentration. During development and testing, C76-89-5 was identified as R76-89-5.

C76-89-5 appears to have merit as a candidate pollinator of commercial hybrids, in that it imparts to its hybrids both high sugar concentration and high sugar yield. These trials, however, were run under conditions in which moderate disease pressure could enhance the apparent performance relative to the more susceptible commercial checks. C76-89-5 has the highest level of resistance known to virus yellows. For the beet yellows virus (BYV) component of virus yellows, resistance is moderate. For beet western yellows virus (BWYV) and other similar luteoviruses, C76-89-5 has high resistance. C76-89-5 has a high frequency of the Rz allele tht conditions resistance to BNYVV. It is highly resistant to sugarbeet erwinia root rot and
moderately resistant to powdery mildew. It is a nonbolting type under California conditions. C76-89-5 is moderately susceptible to beet curly top virus (BCTV). It has a small, compact, dark-green canopy and smooth roots with moderately low soil tare. It is a narrowly based line with the genetic variability that can be ascribed to a full-sib family and could be improved for some traits by continued selection.

LEWELLEN, R.T. and S.R. KAFFKA. Registration of C913-70 Sugarbeet Germplasm. Crop. Sci. 38:903. 1998.

Sugarbeet (Beta vulgaris L.) germplasm line C913-70 (Reg. No. GP-189, PI593691) was developed by the USDA-ARS and the California Agricultural Experiment Station in cooperation with the Beet Sugar Development Foundation and the California Beet Growers Association. It was released in 1996. C913-70 is a multigerm, self-fertile line with green hypocotyls and segregates for genetic male sterility $(a a)$. It is a narrowly based line descended by bulk increases from one S_{1} progeny line. The second and third increases were from roots mass-selected for resistance to rhizomania caused by beet necrotic yellowvein virus (BNYVV). The S_{1} line was produced by selfing in the greenhouse one mother root selected for resistance to rhizomania from Population 913.

Population 913 is a multigerm, self-fertile, genetic male-sterile, facilitated random-mated population similar to C918 (PI578079) released in 1993 that was undergoing population improvement. The S_{1} line was selected based on performance and nonbolting in an S_{1} progeny test. Experimental hybrids were produced in conjunction with subsequent seed increases. The line and experimental hybrids were evaluated in replicated field trials at Salinas, Davis, and Brawley, CA. On the basis of these tests, C913-70 was selected from a set of sister lines as having the best combination of yield and disease resistance. C913-70 has been tested as breeding line 913-70.

Relative to similar material, C913-70 has good general combining ability for sugar yield, and its hybrids are usually E-types for sucrose concentration. It has resistance to bolting in fall-winter plantings and to erwinia root rot [caused by Erwinia carotovora (Jones) Bergey et al. subsp. betavasculorum Thomson et al.] in wound-inoculated evaluation. The $R z$ allele for resistance to rhizomania occurs at a high frequency. C913-70 is moderately resistant to powdery mildew (caused by Erysiphe polygoni DC.) and moderately susceptible to beet curly top virus (BCTV). C913-70 has light green leaves that belies its moderate resistance to virus yellows caused by beet yellows virus (BYV) and beet western yellows virus (BWYV). It appears to have high resistance to the BWYV component. C913-70 is uniform and has low to moderate vigor. In the bolted, seed production phase, its seed stalks are bushy and usually shorter than standard monogerm parental lines. Except for the genetic male-sterile segregates, it has good pollen production.

C913-70 should be tested for its potential as a parental line to produce combined disease and bolting resistant hybrids. The hybrids of C913-70 may meet the requirements for fall and spring planted, overwintered productions where high pressure exists for rhizomania, erwinia, and bolting and where moderate levels of curly top and virus yellows resistances are desirable. Because C913-70 segregates for genetic male sterility, it potentially could be used as the Cparent to produce double-cross hybrids when there would be an advantage to combine different
sources of resistance and factors for productivity. It also may be useful as a germplasm line to generate new breeding material.

LEWELLEN, R.T. and J.K. SCHRANDT. Inheritance of resistance to powdery mildew in sugarbeet derived from Beta maritima. J. Sugar Beet Research. 1999. (in press).

Powdery mildew of sugarbeet (Beta vulgaris L.) caused by Erysiphe polygoni DC. was introduced into N. America in 1974. Since, it has remained a persistent problem. Traditional American germplasm, e.g., curly top resistant breeding lines, were largely susceptible. Chemical control and partial resistance are used to help control losses. High resistance was observed at Salinas in B. vulgaris spp. maritima accessions WB97 and WB242. In a preliminary investigation, this wild beet resistance was backcrossed into sugarbeet where reaction to E. polygoni among individual plants was expressed in more-or-less discrete resistant susceptible classes. Plants from these backcross derived lines were used in controlled crossing designs to obtain testcross and selfed families for genetic analysis. In 1997 these families were scored for reaction to powdery mildew under natural field conditions at Salinas. Their segregation fit the pattern expected for a single, dominant gene for resistance to powdery mildew. The gene symbol $P m$ is proposed for this resistance factor. In field tests in 1998, the identical testcross families showed different segregation patterns. The possible reasons for these differences will be discussed.

LEWELLEN, R.T., G.C. WISLER, H.-Y. LIU, S.R. KAFFKA, J.L. SEARS and J.E. DUFFUS. Reaction of sugarbeet breeding lines and hybrids to beet chlorosis luteovirus. J. Sugar Beet Research (in press). 1999.

Virus yellows is a complex of aphid vectored viruses that may include beet yellows, beet western yellows (BWYV), beet mosaic, and in Europe, beet mild yellows (BMYV) viruses. Recently, a new luteovirus of sugarbeet was recognized in California, Texas, Colorado, and Nebraska that is similar to BWYV and BMYV. It has been named beet chlorosis virus (BChV). BChV has a different host range than BWYV or BMYV. The host range of BChV includes Chenopodium capitatum causing leaves to turn red which led to the virus affectionately being called "capitatum red." On sugarbeet, foliar symptoms are similar to BWYV but with a tendency for greater interveinal yellowing with distinct green veins. BChV was used in 1997 to inoculate sugarbeet variety trials at Salinas and Davis, California to determine its effects on yield and the occurrence of differential host-plant reactions. The yield reduction caused by BChV was similar but probably more severe than that caused by BWYV. Sugar yield losses ranged from about 5 to 40%. In general, the reactions fit the loss pattern known for BWYV and BMYV. Lines and hybrids from the virus yellows resistance breeding program at Salinas tended to show the most resistance. The most susceptible commercial hybrids tested were those that have been grown in Colorado and Nebraska where BChV has caused significant damage in several recent years.

LIU, H.Y., G.C. WISLER and J.E. DUFFUS. Abutilon yellows virus -A new closterovirus transmitted by banded-wing whitefly (Trialeurodes abutilonea). In Abstracts volume 2, 1.11.8, 7th International Congress of Plant Pathology, Edinburgh, Scotland, 9-16 August 1998.

A virus, first discovered on velvetleaf (Abutilon theophrasti) in Illinois, has been maintained in greenhouse culture since 1977. Recent studies on the virus, designated as abutilon yellows virus (AYV), have shown that leaf dips and purified preparations contained long, flexuous, filamentous particles approximately $850-900$ X 12 nm . The virus was transmitted by the bandedwing whitefly (Trialeurodes abutilonea) in a semipersistent manner and retained by the vector for four days. The virus has an apparently narrow host range and could not be mechanically transmitted. Inclusion bodies, characteristic of closteroviruses, were consistently associated with the phloem of AYV-infected Nicotiana clevelandii. Abutilon yellows virus was cloned with dsRNA isolated from AYV-infected N. clevelandii as a template. These clones specifically reacted with dsRNA, as well as with total nucleic acids extracted from AYV-infected plants in dot blot analyses. No reactions were observed in dot blots against uninfected host plants and other known whitefly transmitted closteroviruses.

LIU, H.Y., G.C. WISLER and J.E. DUFFUS. A new bipartite genome closterovirus transmitted by banded-wing whitefly (Trialeurodes abutilonea). Proc. 9th Conference of ISHS Working Group on Vegetable Viruses. pg. 77. Torino, Italy, August 22-27, 1998.

Whitefly-transmitted bipartite closteroviruses continue to grow. The closteroviruses have been characterized by a number of features including particle morphology, cytopathology, mode of transmission, and more recently, genome organization. Abutilon yellows virus (AYV) was first found on velvetleaf (Abutilon theophrasti) in Illinois, has been maintained in greenhouse culture by whitefly transmission since 1977. However, this virus has never been characterized. The purpose of the research on the AYV agent was to verify evidence of its viral nature, to measure some of its properties, to investigate its relationship with its whitefly vector and the relationship with other whitefly-borne closteroviruses. Recent studies on the virus have shown that leaf dips and purified preparations contained long, flexuous, filamentous particles approximately 800-850 X 12 nm . The virus was transmitted by the banded-wing whitefly (Trialeurodes abutilonea) in a semipersistent manner and retained by the vector for four days. The virus has an apparently narrow host range and could not be mechanically transmitted. Inclusion bodies, characteristic of closteroviruses, were associated with the phloem of AYV-infected Nicotiana clevelandii. Ultrastructural studies of infected tissue revealed the consistent presence of cytoplasmic vesicles in phloem parenchyma cells characteristic of closterovirus infections. AYV was cloned using dsRNA isolated from AYV-infected N. clevelandii as a template. These clones specifically reacted with dsRNA, as well as with total nucleic acid extracts from AYV-infected plants in dot blot analyses. No reactions were observed in dot blot hybridizations against uninfected host plants and other known whitefly transmitted closteroviruses. Double stranded RNA analyses of AYV show two prominent dsRNA of approximately 7,800 and $8,200 \mathrm{bp}$. Digoxigenin-11-UTPlabeled riboprobes derived from cDNA clones were used in Northern blot hybridizations to detect these two nonhomologous dsRNA. Based on particle morphology, whitefly-transmission, cytopathology, and phloem-limitation, AYV appears to be another member of whiteflytransmitted bipartite closteroviruses. Currently, only diodia vein chlorosis virus and tomato chlorosis virus have been reported to be transmitted by the banded-wing whitefly. However, these two viruses differ significantly from AYV in host ranges and nucleic acid hybridizations.

A yellowing disease of sugarbeet has been frequently observed in Colorado, Nebraska, Texas, and California sugar beet fields since early 1990s. Symptoms of this disease are identical to those caused by beet western yellows virus (BWYV) including interveinal yellowing, thickening and brittleness of older leaves and necrotic lesions caused by Alternaria sp. BWYV has a wide host range and is readily distinguished by systemic infection of shepherd's purse (Capsella bursapastorus) and lack of infection of Chenopodium capitatum. These newly described isolates have a narrow host range and show interveinal reddening on C. capitatum but do not infect shepherd's purse. This disease is readily transmitted in a persistent manner by the green peach aphid (Myzus persicae), but is not mechanically transmissible. The virus has been purified and the isometric virus particles are 26 nm in diameter. The coat protein from purified preparations is ca. 23 kDa . Serological analysis and biological properties indicate that the virus is distantly related to, but distinct from BWYV. We proposed to name this virus beet chlorosis virus.

WINTERMANTEL, W.M. and J.L. SEARS. Examination of viral interactions in relation to disease severity and resistance in the virus yellows complex of sugarbeet. Phytopathology 89: (in press). 1999.

Virus yellows is a disease complex composed of different genera of plant viruses. Beet yellows closterovirus (BYV), beet western yellows luteovirus (BWYV), and occasionally, beet mosaic potyvirus (BtMV), are the main components. BtMV alone may not contribute to economically significantly disease loss. All of these viruses are transmitted by aphids, and all are usually present at some level in infected fields. Although beet-free periods are useful in managing virus yellows, the increased range and population of the black bean aphid has made this disease more difficult to control in recent years. In this study, sugarbeet varieties exhibiting differential levels of resistance to the yellows complex viruses were inoculated with every possible combination of one, two or all three viruses. Interviral effects were identified and correlated using quantitative molecular techniques. Correlation of stunting and symptom severity with different virus combinations indicate that disease is more severe when all three viruses are present than when plants are infected by one or any combination of two viruses.

WISLER, G.C. Furoviruses. Chapter in Encyclopedia of Plant Pathology, John Wiley \& Sons, New York (in press). 1999.

Furoviruses

Like other virus taxonomic groups, the Furovirus genus has been reorganized over recent years. This is due primarily to a shift in taxonomic characteristics that are considered, for purposes of classification, from primarily biological and serological to primarily molecular. For example, the genus Furovirus was originally named to include those plant viruses that were transmitted by fungi (́u) and had a rigid, rod-shaped (ro) morphology. These viruses also were known to possess a divided genome. A new classification has been proposed which splits the Furovirus genus into four separate genera which have been accepted by the International Committee on Taxonomy of Viruses (ICTV). The new genera are (i) the Furovirus genus which includes soilborne wheat mosaic virus (SBWMV), oat golden stripe virus (OGSV), and sorghum chlorotic spot virus (SCSV) (ii) the Pomovirus genus which includes potato mop-top virus (PMTV), beet soil-borne virus (BSBV), and broad bean necrosis virus (BBNV), (iii) the Pecluvirus genus,
which includes peanut clump virus (PCV) and Indian peanut clump virus (IPCV), and (iv) the Benevirus genus, which includes beet necrotic yellow vein virus (BNYVV) and beet soil-borne mosaic virus (BSBMV) (a new virus recently described infecting sugarbeet). The common characteristics among these viruses include transmission by plasmodiophorid fungi, a rigid, rodshaped particle morphology, and possession of a divided genome. The original Furovirus genus now consists of four different genera, with distinctions made based on genomic properties which are still being elucidated. In some cases, the fungal vector is still not known. The particle morphology of these new genera is similar to that of the Tobamo-, Tobra- and Hordeivirus Genera.

WISLER, G.C., J.E. DUFFUS, H.-Y. LIU and A.V. KARASEV. Distinguishing characteristics of some new whitefly-transmitted criniviruses infecting tomato. Proc. 9th Conference of ISHS Working Group on Vegetable Viruses. pg. 1. Torino, Italy, August 22-27, 1998.

Two whitefly transmitted (WFT) bipartite viruses infecting tomato which belong to the new Genus Crinivirus have been studied with respect to biological and molecular characteristics. Tomato infectious chlorosis virus (TICV) was first found in 1993 infecting field-grown tomatoes in California, and caused a $\$ 2$ million loss to production that year. TICV is transmitted by the greenhouse whitefly (GHWF) (Trialeurodes vaporariorum) and is retained up to 4 days. Its host range includes 26 species in 8 families of crop, weed, and ornamental species. Tomato chlorosis virus (ToCV) was first detected in 1996 from Florida greenhouse production tomatoes. ToCV is transmitted by the GHWF, Bemisia tabaci biotypes A and B, and the banded wing whitefly (T. abutilonea) and is retained for 24 hours in the vector. ToCV also has a moderate host range of 24 species in 7 families. TICV has been found in California, North Carolina, and Italy whereas ToCV has been found in Florida, Colorado, and Louisiana. Particle measurements for TICV and ToCV are within the range for bipartite closteroviruses ($12 \times 850-900,12 \times 800-850 \mathrm{~nm}$, respectively) as are sizes of the dsRNAs (7.8 and 7.4; 8.2 and 7.8 kbp , for RNA 1 and 2 , respectively). Northern blot hybridizations show no detectable homology between the viral RNAs or between the two viruses. Phloem limited cytoplasmic inclusions and vesicles are produced by TICV and ToCV. Antiserum to TICV gives only slightly elevated absorbance (A_{405} nm) readings in DAS-ELISA and extremely faint reactions in western blots against ToCVinfected plant tissues, and indicates the coat protein molecular mass (ca. 31 kDa) is the same for TICV and ToCV. Degenerate primers designed to amplify a portion of the HSP70 coding region of the WFT closteroviruses amplified a 650 bp product of TICV but failed to amplify that region of ToCV due to differences at 3 nondegenerate positions. The $1 \mathrm{a} / 1 \mathrm{~b}$ ribosomal frameshift region of TICV RNA 1 is like LIYV with an overlapping lysine codon ("slippery sequence"; Klaassen, 1996). Like LIYV, TICV and ToCV contain a 9 amino acid overlap at the frameshift, but ToCV does not contain an overlapping lysine codon. A third distinct bipartite WFT-crinivirus has recently been identified infecting tomato. The movement of tomato and other crops and ornamental germplasm with accompanying vectors play an important role in the distribution and incidence of this growing group of WFT viruses.

WISLER, G.C., R.T. LEWELLEN, J.L. SEARS, H.-Y. LIU and J.E. DUFFUS. Differences in beet necrotic yellow vein virus (BNYVV) levels among susceptible and resistant sugar beet cultivars grown in the United States. J. Sugar Beet Research (in press). 1999.

The content of BNYVV in sugar beet roots from representative commercial and experimental cultivars developed for production in the United States was measured by a triple antibody sandwich ELISA (TAS-ELISA). A monoclonal antibody to BNYVV was used as the trapping antibody and a polyclonal antibody made from an in vitro expressed capsid protein of BNYVV for the detecting antibody. Differences in absorbance ($\mathrm{A}_{405 \mathrm{~nm}}$) values measured among the eight cultivars closely corresponded to a dosage effect and to the frequency of the $R z$ allele that conditions resistance to BNYVV. A diploid (Rzrz) hybrid had a significantly lower value than a similar triploid (Rzrzrz) hybrid. Cultivars that segregated (Rzrz:rzrz) had higher absorbance values than uniformly resistant ($R z r z$) hybrids. For all cultivars, differences were observed among the three harvest dates, with progressively lower absorbance values obtained as the season progressed. A strong positive correlation was observed between absorbance values and the rhizomania disease index scores, whereas a negative correlation was observed between absorbance and individual root weight, plot root weight, and sugar yield. These results are important in plant breeding, varietal development, and cultivar evaluation. They show that the breeder or agronomist can be fairly confident of measuring varietal reactions to rhizomania by either scoring or weighing field grown material. This information is useful in resistance breeding and evaluation programs and for the sugar industry in consideration of cultivar choice, inoculum production, and rotations for future cropping.

PAPERS PUBLISHED SINCE ABSTRACTED IN PREVIOUS REPORT

WISLER, G.C., R.T. LEWELLEN, J.L. SEARS, H.Y. LIU and J.E. DUFFUS. Levels of beet necrotic yellow vein virus among resistant and susceptible sugarbeet cultivars grown in rhizomania infested field plots. Proc. 7th Intl. Cong. Plant Path. Edinburgh, Scotland. 1998. 1.11.13. 1998.

WISLER, G.C., R.H. LI, H.-Y. LIU, D.S. LOWRY and J.E. DUFFUS. Tomato chlorosis virus: a new whitefly-transmitted, phloem-limited, bicomponent closterovirus of tomato. Phytopathology 88:402-409. 1998.

DEVELOPMENT OF SUGARBEET BREEDING LINES AND GERMPLASM

R.T. LEWELLEN

CP01 \& CP02 - CP01 \& CP02 are self-sterile, multigerm, germplasm lines that segregate for resistance to powdery mildew caused by Erysiphe polygony. CP01 and CP02 have identical developmental histories except for the source of resistance to powdery mildew. Resistance within CP01 was from WB97 and CP02 was from WB242. High resistance to powdery mildew was identified in WB97 and WB242 separately by J.S. McFarlane and E.D. Whitney at Salinas, CA. WB97 was described by McFarlane as an annual Beta vulgaris spp. maritima line. Seed was obtained from Japan Sugarbeet Improvement Foundation in 1968. Passport information indicated that WB97 was a B.patula line sent to Japan from Wageningen, The Netherlands, as WB46 in 1963. The site of its original collection is not known. Seed of WB242 was obtained from Bergen op Zoom, The Netherlands, in 1974 as a B.v.maritima line. WB242 was originally collected from the Loire River estuary in France. It is also known to have low sugarbeet cyst nematode (SBCN) counts and may be the same or similar as the lines known as Le Pouliguen Group 2 and to (PI198758-59). In tests at Salinas, WB242 was highly variable for plant type, red pigmentation, bolting habit, and root type.

In order to enhance sugarbeet with the high resistance to powdery mildew found in WB97 and WB242 and to study the inheritance of powdery mildew resistance, powdery mildew resistance was backcrossed into sugarbeet line C37. C37 is uniformly and highly susceptible to powdery mildew, completely self-sterile under Salinas greenhouse conditions, and has only green hypocotyls. These traits facilitate making and recognizing the F_{1} hybrids in each generation. Resistance from WB97 and WB242 was maintained in separate but parallel sets of crosses. Usually C37 was used as the female parent so CP01 and CP02 have sugarbeet cytoplasm. CP01 and CP 02 are initially being released as the $\mathrm{BC}_{4} \mathrm{~F}_{2}$ generation. $\mathrm{BC}_{4} \mathrm{~F}_{1}$ testcrosses of these lines were evaluated in the field in 1997 and are known to segregate for reaction to powdery mildew. Unselected stecklings of these $\mathrm{BC}_{4} \mathrm{~F}_{1}$ testcrosses were increased in mass to produce lines P813 and P814 released as CP01 and CP02, respectively. Previously, these lines have been evaluated as P403 and P603 and P404 and P604. Genetic studies in 1997 showed that resistance to rhizomania is inherited in the manner of a singly dominant allele from each wild beet source. This resistance has tentatively been assigned the $P m$ gene symbol but the precise allelism between the WB97 and WB242 resistances has not been determined.

CP01 and CP02 are susceptible to rhizomania caused by beet necrotic yellow vein virus. Likewise, they should be similar to the C37 recurrent parent for other traits. Several of the $\mathrm{BC}_{4} \mathrm{~F}_{1}$ testcrosses segregated for annualism so this trait may remain at a low frequency in these lines. No attempt has been made to determine if any variability for SBCN resistance remains from WB242. CP01 and CP02 should be useful as enhanced sources of resistance to powdery mildew originally found in B.v.maritima and for genetic research.

C26 - C26 is a multigerm, self-sterile line that theoretically is 50\% sugarbeet and 50\% Beta vulgaris L. spp. maritima. The wild beet B.v.maritima was principally derived from accessions collected by Dr. D. Doney et al. in France, UK, and Ireland. C26 was developed from crosses between sugarbeet line C37 and B.v.maritima. The sources of the B.v.maritima plants were from PI's tested in the 1991 and 1993 Commodity Germplasm Committee (CGC) sponsored tests at Salinas. Plants from within individual PI's that showed high resistance to rhizomania caused by beet necrotic yellow vein virus were selected. In 1991, about 200 plants from about 20 accessions collected in the UK and 6 lines collected in Ireland were bulked and increased in mass in 1992 to produce a B.v.maritima population called R223. In 1993, about 160 rhizomania resistant plants from about 11 PI lines collected in France were bulked. Stecklings from population R223 and the bulked selected plants from the French accessions were combined into a single pollinator in 1994 and crossed in bulk toC37. C37 is uniformly susceptible to rhizomania and has only green hypocotyls. Seed harvested from the C37 seed bearing plants was sown in August 1994 into a field plot with rhizomania infestation. In December 1994, F_{1} plants were selected based upon resistance to rhizomania and the red hypocotyl markers of B.v.maritima. These selected F_{1} plants were increased by open pollination to produce an F_{2} population called R526. Records were not maintained as to the contribution of each wild beet accession or which accessions were involved. The UK accessions were in the PI518298-518372 (WB620-694) series. The Irish accessions were in the PI517301-518416 (WB703-738) series. The French accessions were in the PI518598-518608 (WB852-862) series. What these B.v.maritima plants had in common was resistance to rhizomania.

Plants from the F_{2} population were grown in the field under rhizomania infested conditions and were inoculated with virus yellows caused by beet yellows virus and beet western yellows virus, Erwinia carotovora spp. betavasculorum, and powdery mildew caused by Erysiphe polygony. Individual plants were selected for resistance to rhizomania, nonbolting, root conformation, root size, and sucrose concentration. Selected roots were increased in mass by open pollination to produce F_{3} line R726. R726 was again selected under field conditions for resistance to rhizomania, nonbolting, and root conformation and size and increased to produce the F_{4} line R926 that is being released as C26.

The F_{3} line R726 has been evaluated in field trials at Salinas and Brawley, CA. R726 has shown high resistance to rhizomania. Most plants appear to be biennial or hard bolting annuals. Pigmentation is mostly similar to that of sugarbeet but some B.v.maritima patterns still occur. Under rhizomania and/or virus yellows conditions, the components of yield are similar to other open-pollinated lines of sugarbeet. Under VY infected conditions, R726 has yellowing symptoms that score similar to the most tolerant sugarbeet lines. Under mild Cercospora leaf spot epiphytotic at Salinas, R726 was moderately resistant. C26 has dark green canopy, similar to the coloration of many bvm lines from NW Europe. C26 should be a broadly based population from which new genetic variability might be found for the future improvement of sugarbeet.

C829-3, C831-3, C831-4, C833-5, C833-12, C859-8, C864-14, C867-1,

C891-10, \& C911-4-7 - Monogerm, self-fertile, genetic-male-sterile facilitated, random-mated populations of sugarbeet that segregate for resistance to rhizomania $(R z)$ has been under development as part of a comprehensive breeding and population improvement program. From these populations and as part of the population improvement procedure, S_{1} and other types
of progeny families have been generated. These progeny lines have been evaluated per se for reaction to diseases, bolting tendency, and agronomic traits, particularly sucrose content. Progeny lines with desirable combinations of traits have been recombined as part of the population improvement program and a few perceived elite lines have been topcrossed to produce experimental hybrids. The genetic male-sterile segregates within the selected progeny lines were used as the seed bearing parent. These topcrossed progenies were then tested to evaluate each line's hybrid performance.

The early generation, self-fertile (inbred) breeding lines listed below have been selected from these evaluations. These lines are being released from this program to allow testing under a wider array of pollinators, environmental conditions, and production practices. Currently, they are continuing to be evaluated in USDA tests at Salinas and Brawley, CA.

In general, these lines have similar histories and traits. They were originally started from selfed or sib-mated individual plants and have been increased one or more times. Except as noted, they are self-fertile $\left(\mathrm{S}^{\mathrm{f}}\right.$) and segregate for genetic male sterility (A-:aa). They are monogerm and O type or monogerm, O-types can be selected from them. They segregate for resistance to rhizomania ($R z$). Their backgrounds come from the virus yellows and curly top resistance breeding programs. Most have fair to good nonbolting tendency and intermediate reactions to powdery mildew and Erwinia root rot.

At least the first cross to establish cytoplasmic male sterile (CMS) counterparts has been made. Small quantities of seed of these CMS versions were distributed with the released maintainers.

C829-3 was selected from population-829. Population- 829 was developed from crosses between lines similar to C309 and C911-4. C829-3 segregates for hypocotyl color and O-type. Relative to most monogerm lines, it shows tolerance to virus yellows.

C831-3 and C831-4 were selected from population-831. Population-831 was developed from crosses between lines similar to C911-4 and a composite of monogerm, O-type, curly top resistant, nonbolting inbred lines such as C562, C546, C718, and C762-17. The intent of this population was to combine factors for resistance to rhizomania, curly top, and virus yellows. C831-3 and C831-4 appear to have tolerance to virus yellows. C831-3 is homozygous for red and is O-type. C831-4 is moderately resistant to Erwinia. C831-3 appears to have slightly better sugar content and yield and is more resistant to bolting.

C833-5 and C833-12 were selected from population-833. Population-833 was developed from a cross of population-867 to the same composite of monogerm inbred lines used for population831. This population combines factors for resistance to rhizomania, curly top, and bolting. C833-5 showed the best combined sugar content and yield in progeny tests in 1997 and has moderately high nonbolting tendency. C833-12 showed less resistance to bolting. Both lines are homozygous for red hypocotyl color.

C859-8 was isolated from C859. It appears to combine resistance to rhizomania with good sucrose content. C859-8 has green hypocotyls and is O-type.

C864-14 was selected as a half-sib line from populaton-864. Population-864 was developed by backcrossing resistance to rhizomania (Rz) into population-767. C864-14 has mostly red hypocotyls and is O-type.

C867-1 was selected from populations-867. Like population-864, population-867 was a rhizomania resistant counterpart of population-767. Population-767 was developed from a population hybrid between population-755 (C310) and curlytop resistant line C546. C867-1 has shown good curlytop resistance in Idaho tests. It has mostly red hypocotyls and is O-type.

Monogerm lines segregating for resistance to rhizomania

Release No.	Source Population	$\begin{aligned} & \text { Progeny }{ }^{1} \\ & \mathrm{CMS}^{2} \\ & \hline \end{aligned}$	Breeding Line No.
C829-3	829	S1	8829-3, 5829-3
C829-3CMS	C790-15CMS	1	8829-3H50
C831-3	831	S1	8831-3, 5831-3
C831-3CMS	C790-15CMS	1	8831-3H50
C831-4	831	S1	8831-4, 6831-4,5, 831-4
C831-4CMS	C911-4-7CMS	2	8831-4HO
C833-5	833	S1	8833-5, 5833-5
C833-5CMS	C790-15CMS	1	8833-5H50
C833-12	833	S1	8833-12, 5833-12
C833-12CMS	C790-15CMS	1	8833-12H50
C859-8	C859	S1 ${ }^{3}$	6859-8, 2859-8
C859-8CMS	C859CMS	1	6859-8HO
C864-14	864	HS	7864-14, 5864-14, 3864-14
C864-14CMS	C790-15CMS	3	7864-14HO, 5864-14HO
C867-1	867	51^{3}	7867-1, 4867-1, 2867-1
C867-1CMS	C790-15CMS	2	7867-1HO, 4867-1H50
C891-10	891	51^{3}	6891-10, 2891-10
C891-10CMS	C890CMS	1	6891-10HO
C911-4-7	C911-4	S1	8911-4-7, 6911-4-7, 5911-4-7
C911-4-7CMS	C790-15CMS	4	8911-4-7HO, 6911-4-7HO

[^0]C891-10 was selected from population-891. Population-891 was developed from a population hybrid between population-876 and population-890 (C890). C891-10 has green hypocotyls and segregates for O-type.

C911-4-7 was a monogerm selection from line C911-4 that combined resistance to rhizomania and virus yellows. C911-4-7 appears to be self-sterile with some plants showing considerable pseudo-self-fertility. It is a poor O-type and segregates for hypocotyl color. It is moderately tolerant to virus yellows.

Suggested use of these lines is to increase and evaluate for hybrid performance under a range of environmental and production conditions. Those found potentially useful could be selected as needed for improved monogerm and O-type traits. Using conventional techniques or marker assisted selection, lines homozygous for Rz could be developed. One or more of these lines could be used as sources of combined disease resistance and/or recombined to develop a narrowly based monogerm, self-fertile, random-mated population with desirable combinations of disease resistance and hybrid performance characteristics. Relative performance of these lines can be reviewed in the annual Sugarbeet Research Reports (Bluebooks).

INDEX OF VARIETY TRIALS, SALINAS, CA, 1997-98 AT THE U.S. AGRICULTURAL RESEARCH STATION

Tests were located in three fields at Salinas and established at five planting dates. All tests except 998-2098 were under rhizomania infested conditions. Nortron, Pyramin, and Betamix were applied for weed control. Bayleton at 2 lbs material/acre was used for powdery mildew control. Lorsban-4E was applied for insect control. The specific planting and harvest dates as well as plot size and design are shown on each test summary.

Tests are listed in the main table of contents for Salinas by types of material and evaluation. As an aid to find test summaries, they are listed below by ascending test (planting date) number and cross- referenced to the page number. Tests shown as N/A are not available or included in this report.

TEST
NO.
PAGE
NO.
ENTRIES
TEST DESCRIPTION NO.

BOLTING EVALUATION TESTS, BLOCK 2N, PLANTED NOVEMBER, 1997

Tests 198-898, intended to be planted in Nov. 1997, were not planted due to wet conditions (El Niño). Therefore, no bolting evaluations were made in 1998.

VIRUS YELLOWS (BYV-BWYV-BChV) EVAL., BLOCK 4, PLANTED MARCH 1998

998	64	Progeny evaluation (BTS)	n / a
1098	192	Progeny evaluation of MM, S, lines	N/a
1198	48	Virus yellows evaluation of lines	A25
1298	24	Virus yellows evaluation of hybrids	A52
1398	12	Virus yellows eval. of source populations	A32

NON-VIRUS YELLOWS INOCULATED COMPANION TEST, BLOCK 4 , PLANTED MARCH 1998

1498	48	Evaluation of lines	A22
1598	24	Evaluation of hybrids	A42
1698	12	Evaluation of source populations	A31

| TEST NO. | | PAGE |
| :--- | :---: | ---: | :---: |
| NO. | | NOSTRIES |

YIELD TRIALS, BLOCK 4, PLANTED MARCH 1998

1798 Evaluation of monogerm populations A40
$1898 \quad 48$
$1998 \quad 48$
$2098 \quad 24$

Experimental hybrids A44
Population hybrids A47
Topcross hybrids A50

ERWINIA ROOT ROT/POWDERY MILDEW EVAL., BLOCK 3, PLANTED MARCH 1998

2198	125	Inheritance of Resistance to Powdery Mildew	n / a
2298	36	Evaluation of Powdery Mildew (Holly Hybrids)	n / a
2398	64	CBGA Coded Powdery Mildew	n / a
2498	160	ERR/PM Evaluation of Lines	A108
2598	100	ERR/PM Evaluation of Hybrids	A115
2698	12	Performance under Powdery Mildew	A34

YIELD TRIALS UNDER RHIZOMANIA, PLANTED MAY, 1998
$3198 \quad 36$ Eval. of Lines with NR, Rz, Bvm, CR, PMR A35

3298 Eval. PI's \& Salinas lines A37
$3398 \quad 24$
$3498 \quad 29$
BTS Transgenic Trial $\quad \mathrm{n} / \mathrm{a}$
Selection for Rhizomania Resistance $\quad \mathrm{n} / \mathrm{a}$

YIELD TRIALS UNDER RHIZOMANIA, PLANTED APRIL, 1998

4198	8	Seedex line evaluation \& selection	n / a
4298	12	Eval. of source populations	A33
4398	78	CBGA Coded Rhizomania	A64
4498	18	WS, BTS,USDA hybrid evaluation	A60
4598	48	Experimental hybrids	A54
4698	48	Population hybrids	A57
4798	48	Lines under rhizomania	A28
4898	24	Monogerm populations	A41
4998	128	S $_{1}$ progeny test MM, S, Aa, R22	n / a
5098	208	S $_{1}$ progeny test MM, S $, \mathrm{Aa}, R z$	n / a
5198	72	S $_{1}$ progeny test $\mathrm{mm}, \mathrm{S}, \mathrm{Sa}, R z$	n / a

$\begin{aligned} & \text { TEST } \\ & \text { NO. } \end{aligned}$	NO. ENTRIES	TEST DESCRIPTIO	$\begin{gathered} \text { PAGE } \\ \text { NO. } \end{gathered}$
SELECTION FOR RHIZOMANIA RESISTANCE, BLOCK 3, AUGUST, 1998			
6298	13	1998 seed from field increases	n / a
6398	129	1998 seed from Isolators \& GH	n/a
6498	392	$\mathrm{S}_{1} \mathrm{~mm}$ progeny lines	n/a
IMPERIAL VALLEY TRIALS, BRAWLEY, CA			
NON-RHIZOMANIA YIELD, FIELD J, PLANTED SEPTEMBER, 1997			
B198	32	Testcross hybrids	A 76
B298	32	A5 CBGA Coded Variety Trial	A81
B398	32	Topcross hybrids	A78
B498	8	Population hybrids	A80
RHIZOMANIA YIELD (MILD DISEASE), FIELD K, PLANTED SEPTEMBER, 1997			
B598	36	A5 CBGA Coded Rhizomania Trial	A92
B698	48	Experimental Hybrids	A85
B798	24	Population Hybrids	A88
B898	24	Topcross Hybrids	A90
RHIZOMANIA OBSERVATION (SEVERE DISEASE), FIELD K, PLANTED			
SEPTEMBER, 1997			
B998	36	A5 CBGA Coded Observation Test	A96
B1098	72	Evaluation of Lines	A98
B1198	48	Evaluation of Hybrids	A101
BSDF CURLY TOP NURSERY, KIMBERLY, ID, 1998			
USDA	180	Curly Top Evaluation	A103
VIRUS YELLOWS EVALUATION, DAVIS, CA (S.R. KAFFKA)			
D198	12	Split-plot eval. of lines	n / a
D298	190	VY Eval. of S_{1} progeny	n/a
D197	12	Split-plot (BChV) evaluation	A122
D297	12	Split-plot (BChV) eval. hybrids	A124

CERCOSPORA LEAF SPOT EVALUATION

Shakopee $20 \quad$ BTS Test of Salinas Entries 20

Fort Collins 18
FC Test of Salinas Entries
A121

CHICORY EVALUATION, SALINAS, CA

C198	8	Variety Trial, March planted	A133
C298	8	Variety Trial, April planted	A131
C197	12	Variety Trial, March planted	A126
C297	24	Variety Trial, March planted	A127
C397	16	Variety Trial, May planted	A128
C497	16	Variety Trial, May planted	A129

CHICORY EVALUATION, BRAWLEY, CA

C197
6
Variety Trial, September planted
A132
C198 8 Variety Trial, October planted A130

TEST 1498. PERFORMANCE OF LINES WITHOUT VIRUS YELLOWS, SALINAS, CA., 1998

(cont.)							
Variety ${ }^{3}$	Description ${ }^{3}$	Acre Yield ${ }^{1}$		Sucrose	$\begin{gathered} \text { Beets/ } \\ 100^{\prime} \\ \hline \end{gathered}$	Root Rot	RJAP
		Sugar	Beets				
		Ibs	Tons	8	No.	\%	\%
1498-2: MM lines with WB germplasm							
Rizor	HH108, 9-3-97	15661	43.50	18.00	149	0.0	86.2
B4776R	Beta 4776R.7033, 9-1-97	16295	44.97	18.13	144	0.0	89.6
Y767	RZM-ER Y567, (C67)	14601	43.71	16.70	133	0.0	86.1
Y771	RZM Y671	14776	44.34	16.67	145	0.0	87.4
Y772	RZM Y672, (C72)	15221	46.03	16.58	131	0.0	86.6
צ773	R2M Y673R	13352	41.65	16.05	138	0.0	86.4
R779	RZM R679, C79-1 (Rz)	12600	39.27	16.02	129	0.0	87.5
R735	RZM R635, C79-7 (SES)	12542	37.48	16.73	145	0.0	86.2
R736	R2M R636, C79-8 (R22)	13292	39.64	16.76	145	0.0	86.7
R746	RZM R646, $\mathrm{BC}_{3} \mathrm{~F}_{4}$ (C 37 X R22)	12267	36.85	16.65	142	0.0	89.1
R753	RZM R653, $\mathrm{BC}_{4} \mathrm{~F}_{3}$ (C37 \times R22)	11664	36.48	16.01	142	0.0	85.8
R740	R2M-ER R540\%, R540-1, R551	12607	37.58	16.75	131	0.0	84.7
R780 (Iso)	RZM-ER R580, R580NB,R580\%	14109	41.60	16.95	139	0.0	85.0
R780/2	RZM-ER R580-\#, (C80)	14124	39.27	17.98	139	0.0	87.0
R780-45	RZM-ER R580-45, (C80-45)	14173	40.67	17.42	134	0.0	86.4
R726 (C26)	RZM-ER R526, F_{3} (C37 x Bvm-UK)	11512	34.58	16.65	141	0.0	84.8
Mean		13674.8	40.48	16.88	139.3	0.0	86.6
LSD (.05)		1046.8	2.82	0.56	9.4	---	2.5
C.V. (\%)		7.7	7.03	3.33	6.8	---	2.9
F value		14.5**	11.42**	11.48**	3.1**	---	2.4**

TEST 1498. PERFORMANCE OF LINES WITHOUT VIRUS YELLOWS, SALINAS, CA., 1998

Variety ${ }^{3}$	Description ${ }^{3}$	(cont.)					
		Acre Yield ${ }^{1}$		Sucrose	$\begin{gathered} \text { Beets / } \\ 100^{\prime} \\ \hline \end{gathered}$	Root Rot	RJAP
		Sugar	Beets				
		Lbs	Tons	\%	No.	\%	8
1498-3: MM, $\mathrm{S}^{\text {f }}$, Aa lines \& populations							
Y769H31	6931aa x Y669	16321	47.83	17.06	131	0.0	87.0
7931	6931 aa x 931 (C)	15792	47.27	16.73	131	0.5	87.2
7924	6924,...aa x 924 (C)	14449	43.60	16.60	133	0.0	84.4
7926	6931 aa $\times 926$ (C)	15609	46.72	16.71	134	0.0	84.7
7923	RZM-ER 5922,5923	13345	39.12	17.05	144	0.4	86.0
7927	RZM-ER 5921H18	14472	43.76	16.54	139	0.0	85.3
7932CT	Inc. 6260-\#-6263-\#	12133	37.37	16.23	140	0.0	84.6
7911-4-10	RZM 6911-4-10 (Inc. S_{1} lines)	10062	29.24	17.21	144	0.0	81.5
7918-21	RZM 6918-21 (Inc. S_{1} lines)	12965	40.38	16.06	139	0.4	87.4
N724	Inc. N623,N624 (galls)	12913	38.88	16.63	140	0.0	86.3
CR711	RZM R609,R610, ...aa x CR11 (C)	14355	43.29	16.58	137	0.0	84.8
CR712	6931aa x CR11 (C) , (CR09/10)	14983	43.92	17.06	130	0.0	86.3
2725	Z625-\# (C) aa x z31 (C), (CZ25)	14774	42.02	17.58	137	0.0	86.1
Z730	Z630-\# (C) aa x Z31 (C), (CZ25)	13657	39.33	17.35	137	0.0	85.9
Z731	6931aa x 731 (C)	15873	46.45	17.11	139	0.0	87.8
7838	6828,...aa x 838 (C) , (mm popn)	13881	42.81	16.24	130	0.0	86.6
Mean		14099.0	42.00	16.80	136.7	0.08	85.7
LSD (.05)		1001.0	2.89	0.56	10.6	0.50	2.2
C.V. (\%)		7.2	6.95	3.35	7.8	1129.01	2.6
F value		20.1**	20.47**	4.67**	1. 5NS	0.88 NS	3.8**
${ }^{1}$ See Test 1198 for VY inoculated, companion test. See Test 4798 for evaluation under rhizoman appeared to be no or very little rhizomania in Tests 1198-1698. Except for natural BWYV inf noninoculation checks, little VY spread from the BYV-BWYV-BCYV inoculated tests.							
${ }^{3}$ See Test 119	descriptions.						

TEST 1198. PERFORMANCE OF LINES UNDER VIRUS YELLOWS INFECTION, SALINAS, CA., 1998

48 entries x 8 reps., RCB(E); 3 subtests, 16 1-row plots, 21 ft. long	entries	8 rep	. , RCB (E)		nted: Ma vested: c. BYV-BK	arch 17 Octobe WYV-BCL	$\begin{aligned} & 1998 \\ & \text { r } 12, \quad 19 \\ & \text { V: May } \end{aligned}$	$\begin{aligned} & 98 \\ & 13,1998^{1} \end{aligned}$
	Acr	e Yiel			Beets/		Virus Y	Yellows ${ }^{2}$
Variety ${ }^{3} \quad$ Description ${ }^{3}$	Sugar	Sugar	Beets	Sucrose	100'	RJAP	Chronic	Incipient
	Ibs	\%Loss	Tons	\%	No.	\% 8	Mean	Mean
1198-1: MM,O.P. Lines								
B4035R Betaseed, 7-10-97	8144	47	25.72	15.82	148	85.7	6.3	5.8
KW6770 Betaseed, 6770.5193, 1-10-97	7096	47	21.43	16.56	146	85.6	7.0	5.9
97-US75 Inc. 268 (US75) susc. ck.	5261	53	18.95	13.90	145	83.7	7.1	5.1
97-C37 Inc. U86-37, (C37)	8411	31	26.39	15.91	149	86.9	5.2	3.2
R776-89-5NB Inc. R576-89-5NB, C76-89-5	8637	32	26.63	16.23	136	83.6	4.3	3.9
R781 RZM-ER R581, C82	10869	28	34.31	15.84	145	85.2	5.3	4.2
R781-43 RZM-ER R581-43 (C31-43Rz)	10182	27	30.83	16.51	143	85.4	5.9	4.3
R776 R2M-ER R576 (C31Rz)	10384	23	32.68	15.91	141	85.7	4.7	4.0
Y768 RZM-ER Y568	10391	31	31.78	16.35	291	84.9	4.8	4.1
Y769(Iso) RZM-ER Y569, (C69)	11077	26	33.04	16.76	142	84.4	4.9	4.7
R778(Iso) RZM-ER R578,R578/2,R578\%, (C78)	7840	46	24.39	16.10	134	84.6	5.6	4.6
R778\% RZM-ER-\%S,R578/2,R578\%	8047	42	24.94	16.14	137	84.9	5.8	4.6
R770 RZM-ER R570	10155	30	30.88	16.42	135	86.3	5.3	4.1
$\mathrm{F}_{1} \mathrm{MM}, \mathrm{S}^{\mathrm{f}}-, \mathrm{Aa}, \mathrm{Rz}$ sources of S_{1} 's								
R776-89-5H11 5911-4mmaa \times R576-89-5	10952	29	33.41	16.39	142	83.8	4.7	4.3
R776-89-5H13 6913-70aa \times R576-89-5	11522	23	35.53	16.23	142	84.8	4.7	4.3
R776-89-5H31 6931aa \times R576-89-5	11496	30	35.63	16.14	139	84.7	4.4	4.7
Mean	9404.1	34	29.16	16.08	141.2	85.0	5.4	4.5
LSD (.05)	791.3	--	2.34	0.41	9.6	1.6	0.4	0.4
C.V. (\%)	8.5	--	8.10	2.57	6.9	1.9	6.8	9.2
F value	41.1 **	--	38.03**	19.29**	2.0*	2.5**	45.3**	21.8**
TEST 1198. PERFORMANCE OF LINES UNDER VIRUS	YELLOWS I	INFECTI	N, SALIN	AS, CA., 1				
48 entries $\times 8$ reps., RCB (E). ANOVA to comp	are means	across	sets of	tries.				
Mean	8914.8	36	27.90	15.95	139.7	84.9	5.6	4.5
LSD (.05)	745.6	--	2.25	0.43	10.1	1.8	0.4	0.4
C.V. (\%)	8.5	--	8.18	2.73	7.4	2.1	6.6	9.8
F value	27.9**	--	24.76**	11.98**	1.8**	* 4.4**	27.7**	13.4**

Variety ${ }^{3}$	Description ${ }^{3}$	Acre Yield ${ }^{1}$			Sucrose	$\begin{aligned} & \text { Beets/ } \\ & 100^{\prime} \\ & \hline \end{aligned}$	RJAP	Virus Yellows ${ }^{2}$ Chronic Incipient	
		Sugar	Sugar	Beets					
		Libs	8 \% Loss	Tons	\%	No.	\%	08/03	Mean
1198-2: MM lines with wB germplasm									
Rizor	HH108, 9-3-97	7085	55	22.07	16.05	147	86.3	7.3	5.9
B4776R	Beta 4776R.7033, 9-1-97	8924	45	27.29	16.36	140	86.7	7.3	5.6
Y767	RZM-ER Y567, (C67) (R22Y)	10266	30	30.83	16.65	139	85.0	5.1	4.3
Y771	RZM Y671, (R22)	10099	32	31.41	16.06	148	87.1	5.2	4.4
Y772	RZM Y672, (C72) (R22)	9619	37	30.21	15.94	134	85.6	5.5	4.5
Y773	R2M Y673R, $\mathrm{BC}_{5} \mathrm{~F}_{2}$ (C37 \times R22)	8768	34	28.77	15.26	140	85.6	6.0	4.1
R779	RZM R679, C79-1 (Rz)	8001	37	26.43	15.16	140	85.3	5.3	4.1
R735	RZM R635, C79-7 (SES)	9162	27	28.61	16.01	144	83.6	5.9	4.3
R736	RZM R636, C79-8 (R22)	7455	44	24.86	14.99	143	82.5	5.8	4.7
R746	RZM R646, $\mathrm{BC}_{3} \mathrm{~F}_{4}$ ($\mathrm{C} 37 \times \mathrm{R} 22$)	8193	33	26.22	15.61	148	85.0	6.1	4.5
R753	R2M R653, $\mathrm{BC}_{4} \mathrm{~F}_{3}$ (C37 \times R22)	7729	34	24.65	15.69	137	86.7	5.9	4.6
R740	R2M-ER R540\%, R540-1, R551	8740	31	27.34	15.99	143	84.8	6.0	4.1
R726 (C26)	RZM-ER R526, F_{3} (C37 \times Bvm-UK)	8317	28	27.11	15.34	142	81.5	5.2	4.9
MM, O.P. Lines									
R780 (Iso)	RZM-ER R580,R580NB,R580\%	9369	34	29.09	16.11	136	84.6	5.4	4.6
R780/2	RZM-ER R580-\#, (C80)	9590	32	28.19	17.01	139	84.8	5.4	4.2
R780-45	R2M-ER R580-45, (C80-45)	8833	38	27.24	16.23	134	85.3	5.1	3.3
Mean		8759.4	36	27.52	15.90	141.0	85.0	5.8	4.5
LSD (.05)		581.2	--	1.74	0.44	9.8	1.7	0.4	0.5
C.V. (\%)		6.7	--	6.40	2.77	7.0	2.1	7.0	10.4
F value		19.7**	--	14.97**	12.27**	1.5NS	S 5.9**	22.6**	13.0**

\%loss calculated from two separate tests, therefore losses between entries are relative
${ }^{1}$ See Test 1498 for noninoculated, companion test. floss = [(SY NonVY - SY VY)/SY NonVY]100.
 ${ }^{3}$ R $776-89-5 H 11, H 13, H 31$ and Y769H31 are F_{1} hybrids betwe
TEST 1198. PERFORMANCE OF LINES UNDER VIRUS YELLOWS INFECTION, SALINAS, CA., 1998

Variety ${ }^{3}$	Description ${ }^{3}$	(cont.)			Sucrose	$\begin{aligned} & \text { Beets/ } \\ & 100^{\prime} \end{aligned}$	RJAP	Virus Yellows ${ }^{2}$ Chronic Incipient	
		Acre Yield ${ }^{1}$							
		Sugar	Sugar	Beets					
		Lbs	\%Loss	Tons	8	No.	$\stackrel{8}{8}$	08/03	Mean
1198-3: MM, ${ }^{\text {f }}$, Aa lines \& populations									
Y769H31	6931aa x Y669	10897	33	33.78	16.14	131	85.3	5.0	4.6
7931	6931aa x 931 (C)	9902	37	31.93	15.51	130	83.0	5.2	4.4
7924	6924,...aa x 924 (C)	9502	34	29.03	16.36	140	85.3	5.5	4.6
7926	6931aa $\times 926$ (C)	10009	36	31.51	15.88	137	84.7	5.2	4.8
7923	RZM-ER 5922,5923	7987	40	24.96	15.95	137	85.9	5.7	4.3
7927	RZM-ER 5921H18	8836	39	27.92	15.81	146	83.6	5.5	4.6
7932CT	Inc. 6260-\#-6263-\#	8567	29	27.17	15.75	136	83.9	5.5	4.1
7911-4-10	RZM 6911-4-10 (Inc. S_{1} lines)	6352	37	19.43	16.33	142	80.3	5.7	3.9
7918-21	RZM 6918-21 (Inc. S_{1} lines)	6103	53	20.57	14.84	136	85.3	5.6	3.4
N724	Inc. N623,N624 (galls)	7558	41	24.55	15.41	136	84.3	6.0	4.3
CR711	RZM R609,R610, ..aa \times CR11 (C)	7579	47	23.75	15.94	139	86.1	6.2	4.9
CR712	6931aa x CR11 (C) , (CR09/10)	9150	39	28.66	15.96	132	86.1	5.7	4.8
2725	2625-\# (C) aa \times 231 (C), (CZ25)	9271	37	28.61	16.21	141	84.4	5.9	5.0
2730	2630-\# (C) aa $\times 231$ (C), (C225)	7709	44	24.18	15.95	136	83.6	6.5	5.2
2731	6931aa $\times 231$ (C)	9475	40	29.16	16.25	131	85.9	5.8	4.7
7838	6828, ..aa $\times 838$ (C), (mm popn)	8400	39	27.03	15.54	143	85.6	5.9	4.7
Mean		8580.9	39	27.02	14.86	137.0	84.6	5.7	4.5
LSD (.05)		759.4	--	2.29	0.45	9.5	2.0	0.3	0.4
C.V. (\%)		8.9	--	8.58	2.89	7.0	2.4	5.5	9.6
F value		23.5**	--	23.16**	5.93**	1.8NS	S 4.5**	11.7**	8.1**

Variety	Description	Acre Yield		Sucrose	$\begin{gathered} \text { Beets/ } \\ 100^{\prime} \\ \hline \end{gathered}$	RJAP	Powdery Mildew
		Sugar	Beets				
		Lus	Tons	\%	No.	\%	Score
4798-1: M, O.P. lines							
B4035R	Betaseed, 7-10-97	12794	37.28	17.17	178	85.8	4.0
B4776R	Beta 4776R.7653 (3-27-98)	13405	37.39	17.92	208	86.6	2.3
Rizor	HH108, 9-3-97	12922	36.38	17.80	211	86.3	3.8
US H11	1997	8916	27.76	16.01	197	85.9	7.0
R776-89-5NB	Inc. R576-89-5NB, C76-89-5	9498	27.54	17.24	172	84.5	3.4
R781	RZM-ER R581, C82	12911	38.80	16.66	180	86.6	3.0
R781-43	RZM-ER R581-43	11207	32.91	17.02	170	85.7	5.1
R776	RZM-ER R576	10534	31.45	16.75	182	85.9	5.0
Y678	RZM-ER Y568	11186	32.91	16.99	184	85.1	4.0
Y769 (Iso)	RZM-ER Y569, C69	12589	35.98	17.50	197	85.0	3.5
R778(Iso)	RZM-ER R578,R578/2,R578\% (C78)	11886	34.43	17.26	181	86.2	3.9
R778\%	RZM-ER-\%S R578,R578/2,R578\% (C78)	12467	35.68	17.46	195	84.7	3.6
R780 (Iso)	RZM-ER R580,R580NB,R580\% (C80)	12551	36.92	17.00	187	84.5	4.8
R780/2	RZM-ER R580-\# (C80)	12464	35.36	17.61	186	85.6	4.6
R780-45	RZM-ER R580-45 (C80-45)	11956	34.84	17.16	178	86.2	3.5
R770	RZM-ER R570	11435	33.71	16.98	184	85.3	4.9
Mean		11795.1	34.33	17.16	186.8	85.6	4.1
LSD (.05)		1042.1	2.84	0.53	17.6	2.0	0.7
C.V. (\%)		8.9	8.37	3.11	9.5	2.3	17.0
F value		11.7**	10.13**	6.11**	3.5**	1.0 NS	19.3**
TEST 4798. PERFORMANCE OF MULTIGERM LINES UNDER RHIZOMANIA, 1998							
48 entries $x 8$ replications, RCB (e). ANOVA to compare means across sets of entries.							
Mean		11536.6	34.11	16.90	187.0	85.3	4.6
LSD (.05)		522.4	2.84	0.57	18.5	2.0	0.8
C.V. (\%)		9.1	8.47	3.40	10.1	2.4	16.5
F value		13.5**	13.17**	6.23**	2.9**	2.3**	16.0**

Variety	Description	Acre Yield			$\begin{gathered} \text { Beets/ } \\ 100^{\prime} \\ \hline \end{gathered}$	RJAP	Powdery Mildew
		Sugar	Beets	Sucrose			
		Libs	Tons	8	No.	8	Score
4798-2: MM lines with WB germplasm							
Y765	RZM-ER Y565	12727	37.64	16.91	188	84.5	5.0
Y766	RZM-ER Y566	11472	32.80	17.48	198	87.1	4.4
Y767	RZM-ER Y567,C67	12437	36.03	17.26	203	86.8	3.6
Y771	RZM Y671	12369	36.78	16.83	197	84.2	5.1
Y772 (Sp)	RZM Y672 (C72) \times Y74 (C)	13161	39.15	16.79	178	86.5	4.4
Y773	RZM Y673R	10862	33.52	16.20	194	85.2	5.0
Y775	Y-Rrr (C) x Y74 (C)	11436	33.96	16.84	180	84.9	4.1
R724/R725	RZM R824/R425,C79-2/3 (WB41/42)	9552	28.34	16.86	189	83.8	6.3
R735	RZM R635, C79-7 (SES)	10404	30.59	17.00	199	85.3	5.5
97-C37	Inc. U86-37, C37	8924	27.01	16.52	200	85.0	6.6
R779	RZM R679, C79-1 (Rz)	9884	31.67	15.61	170	85.0	4.1
R736	RZM R636, C79-8 (R22)	10287	31.24	16.45	193	84.4	6.3
R746	RZM R646, $\mathrm{BC}_{3} \mathrm{~F}_{4}$ (C37 \times R22)	9871	30.03	16.45	202	84.1	6.1
R753	RZM R653, $\mathrm{BC}_{4} \mathrm{~F}_{3}$ (C37 \times R22)	10315	31.39	16.40	199	85.5	5.8
R740	RZM-ER R540\%,R540-1,R551 (C79-\#s)	10994	33.23	16.54	198	84.3	5.6
R726	RZM-ER R526, F_{3} (C37 x Bvm-UK)	10269	30.52	16.84	197	83.1	6.0
Mean		10935.3	32.74	16.69	192.9	85.0	5.2
LSD (.05)		996.7	21.49	0.56	20.7	2.3	0.7
C.V. (\%)		9.2	8.52	3.37	10.8	2.7	13.6
F value		12.0**	11.58**	4.80**	1.7NS	1.8*	13.1**

Variety	Description	(cont.)		Sucrose	$\begin{gathered} \text { Beets/ } \\ 100^{\prime} \end{gathered}$	RJAP	Powdery Mildew
		Acre Yield					
		Sugar	Beets				
		Les	Tons	\%	No.	$\stackrel{8}{ }$	Score
4798-3: MM, $\mathrm{S}^{\text {f }}$, Aa lines and populations							
7926	6931aa x 926(C)	12899	38.37	16.80	179	85.0	3.8
7927	RZM-ER 5921H18	12188	35.72	17.06	183	85.2	3.9
7923	RZM-ER 5922,5923	11651	34.46	16.86	190	86.4	5.3
7747	Inc. 5747 (A, aa)	10206	33.00	15.49	208	85.0	6.6
7924	6924,...aa x 924 (C)	12789	38.03	16.80	165	85.3	3.4
7931	6931aa x 931 (C)	13480	40.31	16.74	172	84.8	4.0
7932CTM	Inc. 6260-\# - 6263-\#	10627	30.89	17.21	181	84.9	5.1
N724	Inc. N623,N624 (galls)	12213	34.72	17.60	184	87.0	4.4
7911-4-10	RZM 6911-4-10	7853	22.54	17.46	176	81.0	3.3
7918-21	RZM 6918-21	10897	34.01	16.00	189	87.0	3.0
2725	z625-\# (C) aa x z31 (C), CZ25	12736	36.58	17.41	179	85.2	4.4
z730	z623-\# (C) aa x z31 (C), Cz25	12098	35.88	16.85	180	85.7	4.6
2731	6931aa x 231 (C)	13704	40.86	16.79	180	86.0	3.9
CR711	RZM R609,R610,...aa \times CR11 (C)	12400	36.38	17.04	186	85.3	4.9
CR712	6931aa x CR11 (C)	12146	35.57	17.08	177	85.8	5.0
CR713	6260-6263aa x CR11 (C)	12183	36.68	16.61	172	84.9	5.3
Mean		11879.4	35.25	16.86	181.2	85.3	4.4
LSD (.05)		1010.0	2.78	0.62	17.7	1.8	0.8
C.V. (\%)		8.6	7.96	3.71	9.9	2.2	18.4
F value		15.8**	18.16**	5.67**	2.3*	4.3**	10.6**

12 entries x 8 reps. RCB^{1}
1-row plots, $21 \mathrm{ft}$.long
test 1698. EVALUATION OF NON-INOCULATED SOURCE POPULATIONS, SALINAS, CA., 1998
Planted: March 18, 1998 Harvested: October 6, 1998

${ }^{1}$ See Test 1398 for VY inoculated, companion test.
 to rhizomania from R22 (C51). CR713 combines germplasm with Rz, CTR, and CLS resistance. R476-89-18= C76-89-18. R481-43 \& -89 = C82.

${ }^{2}$ Virus yellows score based on a scale of 0 to 9 where $0=$ normal green to $9=100 \%$ yellowed canopy Mean score is for ratings on $6 / 11,8 / 03$, and $8 / 26 / 98$. These are source populations and F_{1} hybrids that are being evaluated as potential evaluation and selection for resistance to $V Y, R z, N B, E R R, e t c .$, and for \% sucrose.
TEST 4298. RHIZOMANIA EVALUATION OF SOURCE POPULATIONS, SALINAS, CA., 1998
Harvested: October 29, 1998

Variety	Description	Acre Yield		Beets/		
		Sugar	Beets	Sucrose	100'	RJAP
		Llbs	Tons	\%	No.	\%
Checks						
Rizor	нн108, 9-3-97	11410	32.05	17.81	192	86.2
B4776R	Beta 4776.7653 (3-27-98)	13172	36.83	17.89	191	87.8
Sources of S_{1} lines being evaluated in 1998						
R576-89-18H18	RZM 4918aa \times R476-89-18	8335	24.78	16.85	139	86.2
R581H18	RZM 4918aa \times RZM R481-43,-89	11567	34.72	16.69	163	86.8
7924	6924,...aa x 924 (C)	10568	31.10	17.02	152	86.0
7931	3961aa $\times 931$ (C)	10361	31.19	16.64	164	86.5
Potential source lines to produce $\mathrm{S}_{1} \mathrm{~s}$ in 1998						
R776-89-5H31	6931aa x R576-89-5	10469	30.20	17.33	158	86.5
Y769H31	6931aa x Y669	10772	31.84	16.92	161	86.7
2731H11	5911-4maa x z31 (C)	10721	32.10	16.73	148	86.8
7926H13	6913-70aa x 926(C)	10996	32.60	16.86	173	86.0
R776-89-5H11	5911-4ma x R576-89-5	10135	29.66	17.08	172	86.0
R776-89-5H13	6913-70aa \times R576-89-5	11199	32.63	17.19	175	85.3
Mean		10808.9	31.64	17.08	165.6	86.4
LSD (.05)		1005.4	2.99	0.37	17.4	1.6
C.V. (\%)		9.3	9.50	2.18	10.6	1.8
F value		9.8**	7.43**	9.78**	6.7 **	1.2NS

TEST 2698. PERFORMANCE UNDER POWDERY MILDEW, SALINAS, CA., 1998

Variety ${ }^{1}$	Description	Stand Count	Powdery Mildew						
		No.	07/31	08/07	08/13	08/20	08/26	09/03	Mean
US H11	F82-546H3 x C36	23	4.3	5.8	5.4	7.5	7.4	7.9	6.4
R746H8	F82-546H3 x RZM R646 (C79-8)	28	3.5	5.6	5.1	7.0	7.0	7.3	5.9
$5 \mathrm{KJ0142}$	Betaseed Rz-PMR, 8-18-97	18	1.4	3.0	3.1	5.4	5.9	6.9	4.3
B4776R	Betaseed 4776R.7033, 9-1-97	31	2.3	3.8	4.3	6.1	6.1	6.6	4.9
P601	PMR P401 ($\mathrm{C} 37-\mathrm{WB} 97,242$)	32	1.8	2.6	2.8	4.0	4.6	4.8	3.4
P604	PMR P404 (C37-WB242), (CP02)	32	1.5	2.5	2.1	3.4	4.1	4.9	3.1
R776-89-5	Inc. R576-89-5, C76-89-5	29	2.0	3.5	3.1	5.5	6.0	6.0	4.4
R539	NB-ER-RZM R139C7, C39R	28	1.4	2.6	3.0	4.6	5.1	5.9	3.8
Rizor	нH108, 9-3-97	25	2.6	4.6	5.1	7.1	7.0	7.9	5.7
SS-NB7R	173404 Spreckels, 3-3-98	22	2.9	4.8	4.1	6.5	6.4	7.1	5.3
R776-89-5H11	5911-4maa x R576-89-5	28	2.1	3.4	3.1	5.0	5.4	6.0	4.2
Y769H31	6931aa x Y669	26	1.8	2.6	2.4	4.0	5.1	5.4	3.5
Mean		26.7	2.3	3.7	3.6	5.5	5.8	6.4	4.6
LSD (.05)		3.5	0.5	0.5	0.6	0.6	0.5	0.7	0.4
C.V. (\%)		13.2	23.0	14.6	15.5	11.2	8.8	11.2	8.0
F value		12.5**	23.1**	37.8**	32.0**	38.9**	30.6**	18.0**	67.6*

Under moderate rhizomania conditions. PM not controlled. Under moderate rhizomania conditions.
${ }^{1} \mathrm{P} 601=\mathrm{F}_{2} \mathrm{BC}_{3} \quad(\mathrm{C} 37$ * WB97, WB242) and from 0 to 9 for reaction to $P M$.
P604 $=F_{2} \mathrm{BC}_{3}$ (C37 * WB242) and segregates for resistance to PM.
TEST 3198. OBSERVATION (SELECTION) OF LINES WITH NR,Rz,BVm RESISTANCE,CR,CTR,PMR,..., SALINAS, CA., 1998

$$
\begin{aligned}
& 36 \text { entries } \times 4 \text { reps, sequential } \\
& \text { 1-row plots, } 11 \mathrm{ft} . \text { long }
\end{aligned}
$$

Planted: May 11, 1998
Harvested: November 18,1998
Beets/ Powdery

- mnn no
o.n in
$\begin{array}{llll}m o & m & n & m \\ n & \dot{n} & \dot{\sim} & \text { in }\end{array}$
 100'

$\stackrel{0}{\circ}$
-1
-1
-1
E6I

\circ

ก
$\stackrel{1}{-1}$

0
∞
\cdots
-1
168
189
182
 Acre Yield
4707
9920
9221
8558
5794
8787

N
7
1
6
1

8574 8051
9200

22.17
25.39
21.16
7641 Description
Variety

Variety	Description

$4707 \quad 15.92$
2 ()
MR P401, $\mathrm{F}_{2} \mathrm{BC}_{3}(\mathrm{C} 37 \mathrm{x}$ WB97, 242) P602NR, composite, (Y671 x P603, composite (WB97) Y671 x P604, composite, (WB242)
Powdery mildew resistance
25.99 10
$\stackrel{n}{n}$
\vdots
24.99 28.61 7641

P601 P702NR-\# (C) P707, B P708, B $\frac{\mathrm{CR}-\mathrm{Rz}}{\mathrm{CR} 711}$ CR711 RZM R609,R610aa x CR11 (C) CR710 CR-RZM R509-\#,R510-\# (C)
6263-\#
Inc. 6260-\# --
Rz - Root aphid resistance
$\frac{C T R-R z}{7932 C T}$
7933 Inc. 6264-\# (C)
R776-89-5 Inc. R576-89-5
TEST 3198. OBSERVATION (SELECTION) OF LINES WITH NR,Rz,Bvm RESISTANCE,CR,CTR,PMR,...,
(cont.)

Acre Yield		Sucrose	$\begin{gathered} \text { Beets/ } \\ 1001 \\ \hline \end{gathered}$	RJAP	Powdery Mildew
Sugar	Beets				
İbs	Tons	\%	No.	$\stackrel{8}{8}$	Score
6184	19.14	16.20	198	85.4	7.3
8047	24.78	16.25	193	85.0	6.3
10410	29.82	17.50	200	83.6	5.0
10275	29.02	17.70	195	84.6	4.0
9728	27.00	18.02	205	86.1	3.8
9383	27.30	17.17	184	84.2	6.0
7185	21.16	17.00	186	84.3	5.8
6494	20.15	16.08	207	82.6	5.0
9750	28.41	17.23	186	84.4	4.0
5163	16.77	15.25	130	79.5	4.8
7121	20.75	17.10	177	84.1	4.5
4998	15.11	16.48	184	86.7	7.5
4343	13.90	15.65	184	85.9	5.8
5066	15.92	15.93	205	84.4	6.3
8189	23.98	17.08	198	85.8	6.3
7242	21.56	16.80	202	84.7	5.3
6188	18.83	16.42	182	85.1	5.3
6010	17.13	17.55	155	87.1	5.3
6970	19.95	17.50	182	84.4	5.0
7330	21.46	17.15	195	83.5	5.8
7025	19.65	17.80	164	82.2	6.0
7618.4	22.51	16.86	185.1	84.6	5.2
1863.7	5.56	0.87	27.5	3.1	0.9
17.5	17.63	3.67	10.6	2.6	12.5
6.4**	5.35**	5.93**	2.6**	1.7*	9.1**

Test under moderate rhizomania.
TEST 3298. EVALUATION OF PLANT INTRODUCTIONS, SALINAS, CA., 1998

TEST 3298. EVALUATION OF PLANT INTRODUCTIONS, SALINAS, CA., 1998

(cont.)									
Variety	Description	Stand Count	Harvest Count	$\begin{aligned} & \text { RZM } \\ & \text { Resist } \end{aligned}$	Powdery Mildew	End Use	Growth Habit	Bolt Tend	Root Color
		No.	No.	8	Score				
Beta vulgaris ssp. vulgaris									
NSL 80223	SD RS-3	20	17	6.8	6.0	6	1	1	1
NSL 81098	SD RS-1	18	16	4.6	4.8	7	1	3	1
NSL 93277	SD A76-36	19	19	4.0	5.8	7	1	3	1
NSL 93279	SD A76-38	20	19	9.0	5.5	7	1	3	1
NSL 95217	SD A77-46	19	19	8.6	5.8	7	1	3	1
Beta vulgaris ssp. vulgaris									
PI 386206	SD VNIS F-526	20	20	9.7	6.8	5	1	2	1
PI 386209	SD N 7776	20	20	14.9	5.8	5	1	2	1
PI 507849	SD 3700002	17	17	18.6	5.8	5	1	1	1
PI 535839	SD AJ-4	19	16	8.0	6.8	5	1	2	1
Beta vulgaris var. cicla									
PI 357359	SD Domasna	20	19	45.4	6.8	1	1	1	1
Beta vulgaris var. maritima									
PI 546378	SD WB 4	20	15	29.9	6.0	6	1	1	1
PI 546396	SD WB 146	16	15	7.9	5.5	6	1	1	1
PI 546422	SD WB 254	21	15	42.5	5.8	6	1	1	1
USDA entries (Multigerm lines)									
R727A	C37 x RZM Brm-PI's	20	21	40.5	6.5				
R727B	Y569rr \times RZM Brm-PI's	22	25	50.1	4.8				
R728	RZM R328 (C79-4)	22	21	73.4	5.3				
Y775	$\mathrm{Y}-\mathrm{Rrr}(\mathrm{C}) \times \mathrm{Y} 74$ (C)	22	21	70.7	5.0				
USDA entries (CLSR-Rz)									
R710	CR-R2M R509-\#,R510-\# (C)	18	18	84.1	5.5				
R709-1	CR-RZM R509A-1	21	22	76.0	4.8				
R709-9	CR-RZM R509A-9	20	18	82.4	6.0				
R710-10	CR-RZM R510A-10	16	15	72.4	4.8				
R710-14	CR-RZM R510A-14	13	12	70.6	7.0				

TEST 3298. EVALUATION OF PLANT INTRODUCTIONS, SALINAS, CA., 1998

(cont.)							
Stand Count	Harvest Count	$\begin{aligned} & \text { RZM } \\ & \text { Resist } \end{aligned}$	Powdery Mildew	End Use	Growth Habit	Bolt Tend	Root Color
No.	No.	\%	Score				
20	20	77.3	5.8				
23	21	57.4	4.5				
21	21	66.8	5.3				
22	21	18.1	5.5				
23	20	13.9	6.3				
19.2	17.9	30.5	5.7				
3.0	3.9	16.4	0.9				
11.2	15.4	38.4	11.4				
4.9**	6.9**	23.0**	4.5**				

[^1]TEST 1798. EVALUATION OF MONOGERM POPULATIONS, SALINAS, CA., 1998

Variety	Description	Acre Yield		Beets/		
		Sugar	Beets	Sucrose	100^{\prime}	RJAP
		Lbs	Tons	앙	No.	\%
Monogerm source populations						
7835		13201	38.90	16.98	144	86.3
7838	$6828, \ldots m m a{ }^{\text {c }} \times 838(\mathrm{C})$, (mm \times VYR)	13518	39.54	17.17	146	87.7
7869 M	RZM-ER 5869 (A, aa) , (867 x 890)	13833	41.28	16.75	143	87.6
7869 NB	NB-RZM 5869 (A, aa), (867 x 890)	13049	37.85	17.25	139	86.9
7834 NBM	NB-RZM 5834,5893(A, a (, (Rzmm $\times \mathrm{mm}, \mathrm{T}-0)$	12390	36.77	16.89	134	86.1
7895M	NB-RZM 5895 (A, aa) , (867 x mm, T-O)	11501	34.52	16.65	142	85.0
7810 NBM	NB-RZM 5810 (A, aa), (C790 x sources)	11205	32.43	17.27	136	84.5
7848	0790 mmaa $\times 848$ (C), (C790 \times sources)	13052	40.83	15.98	142	86.8
7890	RZM-ER 5890 (A, aa), (C890-1Rz)	11541	33.20	17.39	149	87.8
7817%	RZM-ER 5817 (A, aa), (C890-7SES)	12587	36.00	17.49	133	85.0
$7818 \% \mathrm{M}$	RZM-ER 5818 (A, aa) , (C890-8 R22)	11937	35.16	16.98	143	86.0
$7818 / 2 \mathrm{M}$	RZM 6818m (A, aa), (C890-8 R22)	12889	38.53	16.73	148	87.2
Mean		12558	37.09	16.96	141.5	86.4
LSD (.05)		1041	3.00	0.55	10.6	1.7
C.V. (\%)			8.13	3.25	7.5	2.0
F value		5.3** 7.35**		4.45**	1.8NS	3.5**

12 entries x 8 reps. , RCB 1-row plots, 21 ft. long
6. 3
87.7

0
∞
∞
86.1
$+\infty$
∞ $\stackrel{6}{\infty}$ $-$

 m
m
\cdots 148
 37.09
3.00
8.13
7.35 *
 NB-RZM $5810(A$, aa) , (C790 \times sources)
$0790 \operatorname{mmaa} \times 848(C),(C 790 \times$ sources $)$
RZM-ER $5890(A$, aa) , (C890-1Rz)
RZM-ER $5817(A$, aa) $(C 890-7 S E S)$ NB-RZM $5810(A$, aa) , (C790 \times sources)
0790 mmaa $\times 848(\mathrm{C}),(C 790 \times$ sources $)$
RZM-ER $5890(\mathrm{~A}$, aa),$(C 890-1 R z)$
RZM-ER $5817(A$, aa),$(C 890-7 S E S)$
RZM-ER $5818(A$, aa) (C890-8 R22) RZM 6818m(A,aa), (C890-8 R22) 7818/2M お\%8T8L LSD (. 05 Mean F value
RJAP
$\frac{8}{-}$
84.2

ก ก ก	\bigcirc ¢ 10
に上	べぃ
$\infty \infty$	$\infty \infty \infty$

 $\begin{array}{llll}\bullet & - & \infty & \infty \\ \dot{\infty} & \infty & \infty \\ \infty & \infty & \infty \\ \infty & \infty\end{array}$
z
\cdots
$\dot{\sim}$
$\dot{\sim}$

TEST 1598. PERFORMANCE OF HYBRIDS WITHOUT VIRUS YELLOWS INOCULATION, SALINAS, CA., 1998

(cont.)						
		Acre Yield		Beets/		
Variety	Description	Sugar	Beets	Sucrose	100'	RJAP
		Lbs	Tons	\%	No.	\%
Experimental hybrids (cont.)						
2731H41	6831-4HO $\times 231$ (C)	14891	43.02	17.33	131	86.3
R77848	C546H3 x R678	13231	38.43	17.20	129	88.9
R778H34	6834\%aa x R678	15039	42.97	17.49	134	87.1
R778H38M	6837 aa \times R678	14611	41.86	17.46	138	86.4
Mean		15215.2	43.96	17.32	136.5	87.5
LSD (.05)		1050.8	2.65	0.56	10.5	1.9
C.V. (\%)		7.0	6.13	3.28	7.8	2.2
E value		5.0**	7.44**	3.63**	1.7NS	3.0**

Variety	Description	Acre Yield		Sucrose	$\begin{gathered} \text { Beets/ } \\ 100^{\prime} \\ \hline \end{gathered}$	Root Rot	
		Sugar	Beets				RJAP
		Libs	Tons	\% 8	No.	\%	\%
1898-1: O.P. Pollinators							
US H11	L111102, 1997	12495	40.65	15.38	144	0.0	88.5
Rizor	HH108, 9-3-97	15517	44.45	17.48	146	0.8	86.2
B4776R	Beta 4776R large.7033, 9-1-97	16278	45.24	17.99	141	0.0	88.2
SS-NB7R	Spreckels, 3-3-98	14199	41.97	16.92	139	0.5	87.9
SS-NB5R	Spreckels, 3-3-98	14343	43.18	16.63	133	0.4	86.9
R779H50	C790-15CMS x RZM R679	14835	44.53	16.66	143	0.0	86.9
R735H50	C790-15CMS x RZM R635	14462	43.18	16.76	142	0.0	86.4
R778H8	C546H3 \times R678	13669	41.35	16.55	129	0.0	87.0
R778H50	C790-15CMS \times R678	15731	46.22	17.00	134	0.0	87.5
Y769H8	C546H3 x Y669	14189	44.13	16.08	140	0.0	87.9
Y769H50	C790-15CMS X Y669	15443	45.93	16.84	136	0.0	88.9
R776-89-5H8	C546H3 \times R576-89-5	14908	43.55	17.10	142	0.0	88.3
R776-89-5H50	C790-15CMS \times R576-89-5	15474	45.08	17.16	142	0.0	86.7
R776-89-5H27	6831-4HO \times R576-89-5	15372	44.34	17.34	135	0.0	88.0
R678H33-5	5833-5aa x R578	14805	41.10	18.04	131	0.0	85.8
R680H50	C790-15CMS x RZM R580	15836	46.24	17.13	137	0.0	88.1
Mean		14847.1	43.82	16.94	138.4	0.1	87.5
LSD (.05)		1050.2	2.82	0.57	9.5	0.6	2.2
C.V. (\%)		7.2	6.49	3.40	6.9	552.2	2.6
F value		6.4**	3.22**	10.32**	2.2NS	1.4NS	1.3NS
TEST 1898. EVALUATION OF EXPERIMENTAL HYBRIDS, SALINAS, CA., 1998 48 entries $x 8$ reps, RCB(E). ANOVA to compare means across sets of entries.							
Mean		14980.8	44.33	16.90	139.9	0.04	87.3
LSD (.05)		1136.3	2.99	0.58	10.5	0.37	2.1
C.V. (\%)		7.7	6.84	3.47	7.7	849.53	2.4
F value		6.1**	5.44**	8.02**	3.50**	1.37NS	2.4**

TEST 1898. EVALUATION OF EXPERIMENTAL HYBRIDS, SALINAS, CA., 1998

Variety	Description	(cont.)		Sucrose	$\begin{gathered} \text { Beets/ } \\ 100^{\prime} \end{gathered}$	Root Rot	
		Acre Yield					
		Sugar	Beets				RJAP
		Ibs	Tons	$\underline{8}$	No.	$\underline{8}$	$\stackrel{8}{8}$
1898-3: $\mathrm{S}^{\text {f }}$,MM, Aa pollinators and lines							
B4038R	Betaseed, L6KJ0190, 4-7-97	16689	45.66	18.28	146	0.0	87.5
нм7072	Hilleshog, 3.20-4.00, 2-24-98	15566	42.71	18.23	140	0.0	87.9
7931H50	C790-15CMS $\times 931$ (C)	15996	48.10	16.63	140	0.0	86.6
7924H50	C790-15CMS $\times 924$ (C)	14996	44.51	16.84	133	0.0	86.7
2731H50	C790-15CMS $\times 231$ (C)	15715	46.14	17.06	146	0.0	86.8
CR711H50	C790-15CMS \times CR11 (C)	15078	45.34	16.63	141	0.0	86.6
5911-4H50	C790-15CMS \times RZM 4911-4	15239	44.97	16.96	141	0.0	85.8
6913-70H50	C790-15CMS \times 5913-70	16109	47.46	16.98	146	0.0	87.6
6918-12H50	C790-15CMS \times RZM 4918-12	15561	44.97	17.30	137	0.0	87.0
7918-21H50	C790-15CMS \times RZM 6918-21	17166	51.42	16.70	153	0.0	89.8
7911-4-10H50	C790-15CMS \times RZM 6911-4-10	15581	44.87	17.38	141	0.0	84.7
R710H50	C790-15CMS \times CR-RZM R509,R510 (C)	15667	45.08	17.38	145	0.0	87.6
R709-1H50	C790-15CMS \times CR-R2M R509A-1	15809	44.97	17.58	145	0.0	86.3
R709-9H50	C790-15CMS \times CR-RZM R509A-9	16681	51.78	16.09	149	0.4	88.5
R710-10H50	C790-15CMS \times CR-RZM R510A-10	15717	46.29	16.98	154	0.0	86.7
R710-14H50	C790-15CMS \times CR-RZM R510A-14	14823	45.03	16.46	153	0.0	87.0
Mean		15774.6	46.21	17.09	144.4	0.0	87.1
LSD (.05)		1130.6	2.80	0.58	9.9	---	2.2
C.V. (\%)		7.2	6.13	3.44	6.9	---	2.6
F value		2.5**	5.89**	8.08**	2.8*	---	2.1*

EVALUATION OF POPULATION HYBRIDS, SALINAS, CA., 1998

 $\operatorname{RCB}(E) ; 3$ subtests: $16 \times 8, \operatorname{RCB}(E)$ 1-row plots, 21 ft. longDescription

$$
\text { March } 18,1998
$$

$\begin{aligned} & \infty \\ & \underset{\sim}{a} \\ & \stackrel{1}{\alpha} \end{aligned}$	del	$\begin{array}{ll} \infty & N \\ \dot{0} & \underset{\sim}{+} \end{array}$	6ルnmin 	\cdots
$\left.\begin{array}{ll} + \\ 0 & + \\ 0 & + \\ 0 & 0 \\ 0 & 0 \end{array} \right\rvert\,$	dol	$\begin{aligned} & 70 \\ & 00 \\ & 0 \end{aligned}$	000000 000000	0
	익			$\stackrel{\text { m }}{\sim}$

Test 2098. EVALUATION OF TOPCROSS HYBRIDS, SALINAS, CA., 1998
lanted: March 18, 1998
Harvested: October 1, 1998

 $\stackrel{\sim}{\infty} \underset{\infty}{\infty} \underset{\infty}{\sim} \underset{\infty}{\sim} \underset{\infty}{\infty}$
 Planted: March 18, 1998
\qquad
Test 2098. EVALUATION OF TOPCROSS HYBRIDS, SALINAS, CA., 1998

(cont.)								
Variety		Description	Acre Yield		Beets/			
		Sugar	Beets	Sucrose	$10{ }^{\prime}$	RJAP		
				Lbs	Tons	\%	No.	8
Topcrosses with C78 (cont.)								
R778H18-12	6818-12aa	$\times \mathrm{R} 678$	13076	38.90	16.80	137	87.3	
R778H18-21	6818-21aa	x R678	13676	38.86	17.60	128	86.2	
R778H18B-1	6818B-1aa	\times R678	14504	39.85	18.17	138	87.7	
R778H18B-2	6818B-2aa	$\times \mathrm{R} 678$	14383	40.54	17.76	145	86.9	
Mean			14181.2	40.57	17.47	133.6	86.8	
LSD (.05)			997.9	2.40	0.52	12.2	2.0	
C.V. (\%)			7.1	6.01	3.02	9.3	2.4	
F value			6.8 *	5.53**	7.26**	3.0**	1.7*	

TEST 1298. PERFORMANCE OF HYBRIDS UNDER VIRUS YELLOWS INFECTION, SALINAS, CA., 19
Incipient
Mean

5.0
5.4
5.4
4.4

4.8
0.3
7.3
24.2 **

Acre Yield ${ }^{1}$			Sucrose	$\begin{gathered} \text { Beets/ } \\ 100^{\prime} \end{gathered}$	RJAP	Virus Chronic
Sugar	Sugar	Beets				
Lbs	\%Loss	Tons	$\stackrel{8}{8}$	No.	\%	Mean
8847	41	27.41	16.14	136	84.1	5.7
7426	44	23.23	15.99	130	85.4	6.5
7650	49	23.34	16.38	142	86.5	6.4
8540	42	26.18	16.30	143	85.9	5.7
8812.0	42	27.09	16.26	140.3	86.1	5.8
762.0	--	2.13	0.46	9.0	2.2	0.3
8.8	--	8.00	2.85	59.4	2.5	5.8
17.5**	--	20.77**	3.31**	2.1	* 1.7*	40.8**

TEST 4598. RHIZOMANIA EVALUATION OF EXPERIMENTAL HYBRIDS, SALINAS, CA., 1998

Variety	Description	Acre Yield		Beets/		
		Sugar	Beets	Sucrose	100 '	$\frac{\text { RJAP }}{q}$
		Lbs	Tons	8	No.	
4598-2: Resistance from Rz,MM,O.P. Pollinators						
HM7072	Hilleshog, 3.20-4.00 (2-24-98)	10916	29.12	18.73	168	87.0
B4038R	Betaseed, L6KJ0190 (4-7-97)	12180	33.05	18.42	200	87.3
KW6770	Betaseed, 6770.5193 (1-10-97)	7448	21.87	17.06	181	88.1
R678H33-5	5833-5aa (C833-5) \times R578	11354	32.05	17.74	192	86.6
R680-H29-3	5829-3aa (C829-3) x R580	10112	29.28	17.30	170	84.9
R680H31-3	5831-3aa (C831-3) x R580	10813	31.47	17.17	179	87.2
R776-89-5H8	C546H3 x (C562CMS \times C54) R576-89-5	8785	25.50	17.20	192	86.2
R776-89-5H50	C790-15CMS \times R576-89-5	10594	30.13	17.59	179	88.6
R776-89-5H27	6831-4HO (C831-4CMS) x R576-89-5	10148	29.22	17.38	179	85.7
R576-89-18H50	C790-15CMS x R476-89-18	9610	28.62	16.79	198	86.6
R77848	C546H3 (C562CMS \times C546) \times R678	9305	27.86	16.69	191	88.3
R778H50	C790-15CMS \times R678	9542	28.42	16.84	181	85.8
R77847	6911-4-7HO (C911-4-7CMS) \times R678	10010	29.83	16.81	178	86.5
Y $679 \mathrm{H8}$	C546H3 x Y669	8333	25.95	16.10	183	86.9
Y769H50	C790-15CMS x Y669	9308	28.62	16.30	191	86.5
Y769H7	6911-4-7HO (C911-4-7CMS) \times Y669	10026	30.18	16.63	179	86.1
Mean		9905.3	28.82	17.17	183.8	86.8
LSD (.05)		1030.7	2.89	0.43	18.8	3.1
C.V. (\%)		10.5	10.14	2.53	10.3	2.1
F value		10.1**	6.81**	20.88**	1.9*	2.5**

TEST 4598. RHIZOMANIA EVALUATION OF EXPERIMENTAL HYBRIDS, SALINAS, CA., 1998

(cont.)						
Variety	Description	Acre Yield		$\begin{array}{cc}\text { Sucrose } & \text { Beets/ } \\ \text { Su' }\end{array}$		RJAP
		Sugar	Beets			
		Libs	Tons	\%	No.	\%
4598-3: Resistance from $\mathrm{Rz}, \mathrm{MM}, \mathrm{S}^{\ddagger}$, Aa Pollinators						
SS-NB5R	Spreckels SS-IV2R.522401 (3-3-98)	8888	27.01	16.48	165	86.9
Rebecca	Betaseed 4KJ0158 (3-19-97)	12181	35.26	17.27	200	87.3
6913-70H50	C790-15CMS \times 5913-70	10940	32.75	16.73	207	86.8
7911-4-10H50	C790-15CMS \times RZM 6911-4-10	11140	31.98	17.41	194	85.0
6918-12H50	C790-15CMS x RZM 4918-12	10251	30.69	16.70	201	86.3
7918-21H50	C790-15CMS \times RZM 6918-21	11489	36.13	15.91	212	87.5
7931H50	C790-15CMS $\times 931$ (C)	9744	29.33	16.65	190	88.1
7924H50	C790-15CMS $\times 924$ (C)	10003	29.68	16.85	187	88.3
2731H50	C790-15CMS \times z31 (C)	10504	31.91	16.46	193	86.0
CR711H50	C790-15CMS \times CR11 (C)	9787	30.23	16.19	188	85.3
R710H50	C790-15CMS \times CR-RZM R509,10 (C)	10377	31.12	16.69	182	86.7
R709-1H50	C790-15CMS \times CR-RZM R509A-1	12048	35.07	17.17	191	86.2
R709-9H50	C790-15CMS \times CR-RZM R509A-9	11346	35.72	15.90	205	87.3
R710-10H50	C790-15CMS \times CR-RZM R510A-10	11054	34.26	16.15	211	85.8
R710-14H50	C790-15CMS \times CR-RZM R510A-14	8232	26.10	15.80	209	88.1
2731H7	6911-4-7HO $\times \mathrm{Z31}$ (C)	10209	30.23	16.89	179	86.5
Mean		10512.1	31.72	16.58	194.5	86.8
LSD (.05)		805.8	2.36	0.42	18.0	1.4
C.V. (\%)		7.7	7.51	2.58	9.4	1.7
F value		13.7	12.82**	10.62**	4.0**	3.6**

Planted: April 28, 1998
TEST 4698. RHIZOMANIA EVALUATION OF POPULATION HYBRIDS, 1998

(cont.)							
Variety	Description		Acre Yield		Beets/Sucrose 100		RJAP
			Sugar	Beets			
			Lbs	Tons	8	No.	\%
4698-2: Population Hybrids							
B4776R	Beta 4776R. 7653 (3-27	-98)	13952	38.60	18.09	213	87.3
R778H28	6828aa \times R678		10573	31.34	16.88	190	84.2
R778H33	6833aa x R678		12005	33.84	17.74	175	85.9
R778H33\%	6833 \%aa \times R678		12482	35.37	17.64	179	85.3
R778H34	6834\%aa \times R678		12050	34.32	17.56	201	86.0
R778H36	6836aa \times R678		11413	32.67	17.50	175	85.7
R778H38M	6837aa x R678		11938	34.21	17.44	205	85.0
R778H59-8M	6859-8aa (C859-8) \times R	678	10391	28.97	17.96	190	85.3
R778H93	6891-10НО (C891-10) \times	R678	12080	35.37	17.08	202	86.2
R778H64	5864-14\%О (C864-14) x	R678	11656	33.62	17.31	191	85.5
7931H87	6890aa (C890-1) x 931	(C)	11851	34.77	17.02	194	86.1
R776-89-5H66	4867-1H50 (C867-1H50)	x R576-89-5	10671	30.33	17.59	198	85.4
R776-89-5H13	6913-70aa x R576-89-5		11461	33.46	17.14	198	85.9
R776-89-5H31	6931aa x R576-89-5		11786	33.71	17.49	182	85.6
R776-89-5H27	6831-4HO x R576-89-5		11496	32.60	17.64	186	85.7
R776-89-5H11	5911-4aa \times R576-89-5		10888	31.04	17.54	178	85.5
Mean			11668.	33.39	17.48	191.0	85.7
LSD (.05)			890.7	2.43	0.48	16.1	1.5
C.V. (\%)			7.7	7.34	2.76	8.5	1.8
F value			7.3** 6.97**		3.71**	4.0**	1.5 NS

TEST 4698. RHIZOMANIA EVALUATION OF POPULATION HYBRIDS, 1998

(cont.)						
Variety	Description	Acre Yield		$\begin{array}{cc}\text { Sucrose } & \text { Beets/ } \\ \text { Su0 }\end{array}$		RJAP
		Sugar	Beets			
		Ibs	Tons	\%	No.	\%
4698-3: Topcross Hybrids						
Rebecca	Betaseed 4KJ0158 (3-19-97)	14043	39.00	18.01	203	87.2
R778H87	5890aa (C890-1Rz) \times R678	10884	31.90	17.05	175	86.2
R778H12M	6812aa (C890-1/2,WB41/42) \times R678	11539	33.46	17.26	204	86.8
R778H17M	6817aa (C890-7SES) \times R678	12029	35.27	17.09	188	85.4
R778H17-5	6817-5aa x R678	11562	33.71	17.15	191	85.8
R778H17-6	6817-6aa x R678	11568	33.38	17.33	142	86.8
R778H18	6818aa (C890-8R22) \times R678	11920	35.17	16.98	189	85.9
R778H18B-1	6818B-1aa \times R678	11940	33.56	17.80	194	86.1
R778H18B-2	6818B-2aa x R678	11501	32.55	17.67	201	85.2
R778H18B-21	6818B-21aa \times R678	11564	32.86	17.60	181	85.3
R778H18-1	6818-1aa x R678	11137	31.49	17.70	186	84.0
R778H18-2	6818-2aa \times R678	12292	35.45	17.36	189	85.0
R778H18-6	6818-6aa \times R678	10760	31.04	17.34	192	85.4
R778H18-11	6818-11aa \times R678	10762	31.95	16.88	172	85.2
R778H18-12	6818-12aa x R678	10230	29.88	17.11	190	86.2
R778H18-21	6818-21aa \times R678	11672	34.01	17.16	156	86.2
Mean		11587.7	33.42	17.34	184.5	85.8
LSD (.05)		834.2	2.36	0.42	19.1	1.6
C.V. (\%)		7.3	7.13	2.42	10.5	1.9
F value		8.2	* 6.55**	4.84**	5.9**	2.0*

TEST 4498. WESTERN SUGAR, BETASEED, \& USDA HYBRID EVALUATION UNDER RHIZOMANIA, SALINAS, CA., 1998 | DI $\frac{8 R(0-3)}{8 R(0-4)}$ |
| :--- | NOTES: Test 4498 was planted into two 18 variety $x 4$ replication sections, $4398-1$ and $4398-2$. Test 4398 was

analyzed and summarized three ways: $4498(18 \mathrm{~V} x 8 R, R C B) ; 4498-1(18 V x \ln , R C B) ;$ and $4498-2(18 V x 4 R, R C B)$.
$4498-1$ was in an area of the field that had uniform and moderate levels of rhizomania. $4498-2$ was in an area
nearby, but had light to mild rhizomania. After visual inspection, test $4498-1$ was chosen for hand harvest and
scoring individual plants for rhizomania. $4498-2$ was machine harvested and was not scored for rhizomania.
Rhizomania was scored on a scale of 0 to 9 where $9=$ severe. Because rhizomania was moderate, root symptoms formed a continuum and it was not completely obvious where to draw the line between resistance and susceptibility. Disease reaction for US H11 suggested that classes 0-3 were resistant and 4-9 susceptible. However, resistant varieties suggested that $0-4$ was resistant and 5-9 susceptible with regards to the $R z$ gene. In table 4498-1, analyses were run both ways. Probably, where 0-3 = resistant, the frequency of resistant plants was underestimated; where $0-4=r e s i s t a n t$, the frequency of resistant plants was overestimated. DI $=$ disease index is the weighted mean of the ratings for each variety where a lower value suggests higher resistance.

Variety	Description	Acre Yield		Beets/Sucrose 100		RJAP	Resistance		
		Sugar	Beets						
		Ibbs	Tons	8	No.	8	DI	8R(0-4)	8R (0-3)
Western Sugar entries									
Beta A827R	Betaseed, 4-24-98	9901	27.31	18.13	174	84.4	3.4	63.9	87.9
HH-Rizor	Holly, 4-24-98	11133	31.55	17.65	190	84.9	3.2	74.0	94.2
Monohikari	Seedex, 4-24-98	5958	18.88	15.80	193	88.6	5.3	15.8	20.2
HM 1639	Novartis, 4-24-98	9654	27.15	17.76	200	88.0	2.4	94.8	97.7
Beta 826R	Betaseed, 4-24-98	10237	29.22	17.49	196	87.2	3.1	75.7	92.0
Beta 7CG9236LL	Betaseed transgenic	9853	25.40	19.41	201	86.3	2.8	88.7	99.5
Checks									
B4776R	Betaseed 4776.7653 (3-27-98)	11787	33.64	17.54	192	86.5	2.3	93.0	98.7
B4038R	Betaseed, 16KJ090 (4-7-97)	11399	30.81	18.52	185	87.1	3.0	74.2	86.0
KW6770	Betassed, 6770.5193(1-10-97)	6408	18.94	16.94	180	86.3	5.0	17.4	30.8
Betaseed entries									
4CG6202	Betaseed, 3-23-98	8770	25.03	17.51	181	85.6	3.4	63.1	89.4
5 KJ 5017	Betaseed, 3-23-98	11332	31.18	18.21	190	87.2	2.6	90.4	99.4
6CG7229	Betaseed, 3-23-98	8326	22.89	18.23	137	86.3	3.6	49.0	81.4
6CG7265	Betaseed, 3-23-98	10512	31.76	16.56	204	85.9	3.2	66.7	87.6
7CG7084	Betaseed, 3-23-98	8997	25.19	17.85	152	86.4	3.4	56.7	78.6
7CG7328	Betaseed, 3-23-98	7857	21.01	18.70	130	85.3	3.7	45.0	82.0
Checks									
B4035R	Betaseed, 7-10-97	9463	28.22	16.85	169	86.1	3.0	77.9	90.5
R776-89-5H7	6911-4-7HO \times R576-89-5	9829	28.42	17.30	188	85.1	3.2	68.8	87.6
US H11	L113102, 1997	4203	14.57	14.38	177	85.8	5.2	10.1	24.6
Mean		9201.1	26.18	17.49	180.0	86.3	3.4	62.5	79.4
LSD (.05)		1257.9	3.60	0.69	21.5	2.4	0.5	12.3	11.0
C.V. (\%)		9.6	9.69	2.78	8.4	1.9	9.4	13.9	9.8
F value		21.1*	16.94**	22.07**	7.8**	1.7NS	29.7**	* 36.5**	44.0**

[^2] 1-row plots, 22 ft . long

Variety	Description	Acre Yield		Beets/		
		Sugar	Beets	Sucrose	$10{ }^{\prime}$	RJAP
		Ibbs	Tons	\%	No.	8
Western Sugar entries						
Beta A827R	Betaseed, 4-24-98	13901	37.19	18.70	183	85.3
HH-Rizor	Holly, 4-24-98	14353	40.21	17.86	204	85.5
Monohikari	Seedex, 4-24-98	11827	34.77	17.01	198	89.4
HM 1639	Novartis, 4-24-98	13754	38.90	17.69	202	86.2
Beta 826R	Betaseed, 4-24-98	14947	40.01	18.69	218	88.0
Beta 7CG9236LL	Betaseed transgenic	14665	37.44	19.60	206	86.4
Checks						
B4776R	Betaseed 4776.7653 (3-27-98)	14146	39.71	17.84	198	87.0
B4038R	Betaseed, 16KJ090 (4-7-97)	16115	43.13	18.69	206	87.2
KW6770	Betassed, 6770.5193(1-10-97)	12544	34.47	18.21	206	87.8
Betaseed entries						
4CG6202	Betaseed, 3-23-98	12179	33.96	17.92	196	86.1
5KJ5017	Betaseed, 3-23-98	15366	41.92	18.33	198	87.8
6CG7229	Betaseed, 3-23-98	12336	33.56	18.35	179	85.5
6CG7265	Betaseed, 3-23-98	13806	39.30	17.56	204	87.1
7CG7084	Betaseed, 3-23-98	12602	36.58	17.23	175	85.1
$7 \mathrm{CG7328}$	Betaseed, 3-23-98	10416	28.47	18.30	152	86.2
Checks						
B4035R	Betaseed, 7-10-97	13049	37.39	17.45	190	87.0
R776-89-5H7	6911-4-7но \times R576-89-5	13405	38.29	17.51	200	86.0
US H11	L113102, 1997	9966	30.94	16.13	205	87.6
Mean		13298.9	37.01	17.95	195.5	86.7
LSD (.05)		1611.1	4.42	0.61	26.0	1.8
C.V. (\%)		8.5	8.42	2.41	9.4	1.4
F value		8.1**	5.85**	12.95**	2.7**	3.3**

78 entries $x 8$ replications, RCB 1-row plots, 22 ft. long					Planted: Harvested:		April 28, (Rep. 1-4) (Rep. 5-8)	1998 Oc Nov	ober 27 ember	$\begin{aligned} & 1998 \\ & 1998 \end{aligned}$
Code		Source	Acre Yield		Sucrose	$\begin{gathered} \text { Beets/ } \\ 100^{\prime} \end{gathered}$	RJAP	Resistance		Root Rot
No.	Variety		Sugar	Beets						
			Libs	Tons	\%	No.	\%	DI	\%R(0-4)	8
SR- 1	$97 \mathrm{CX14}$	Spreckels	11147	32.24	17.24	191	86.6	3.6	83.1	0.0
SR- 2	H945187	Spreckels	9973	29.45	16.92	176	88.0	4.0	67.3	0.0
SR- 3	5CG7497	Betaseed	11633	33.44	17.38	204	86.6	3.5	79.2	0.0
SR- 4	$97 \mathrm{Cx12}$	Spreckels	9934	28.76	17.24	198	86.8	3.4	92.9	0.0
SR- 5	Beta 4684R	Betaseed	11767	32.86	17.89	182	85.9	2.6	97.8	0.0
SR- 6	7CG7304	Betaseed	11585	34.28	16.93	193	85.1	3.7	75.7	0.0
SR- 7	$97 \mathrm{CX10}$	Spreckels	11865	32.80	18.08	212	85.8	3.4	88.2	0.0
SR- 8	SS-778R	Spreckels	10887	32.40	16.77	197	86.6	4.7	50.2	0.0
SR- 9	5CG7514	Betaseed	11648	32.09	18.16	209	87.3	3.5	88.4	0.0
SR- 10	4KJ0164	Betaseed	12801	36.81	17.33	212	88.5	3.0	98.4	0.0
SR- 11	6CG7281	Betaseed	12063	33.97	17.73	163	85.6	3.4	96.3	0.0
SR- 12	Beta 4035R	Betaseed	12470	34.72	17.94	205	86.4	2.9	95.5	0.0
SR- 13	SS-338R	Spreckels	9802	28.57	17.15	187	86.8	4.2	55.8	0.0
SR- 14	Beta 4776R	Betaseed	13333	36.86	18.11	209	87.3	2.9	96.2	0.0
SR- 15	98C×30	Spreckels	9971	30.16	16.58	183	86.2	3.8	74.3	0.0
SR- 16	97XC08	Spreckels	11327	31.21	18.22	224	87.1	3.3	87.8	0.0
SR- 17	SS-NB5R	Spreckels	10129	29.25	17.31	175	87.1	3.7	77.3	0.0
SR- 18	98CX19	Spreckels	10226	29.67	17.23	192	86.8	3.4	81.4	0.0
SR- 19	$98 \mathrm{CX16}$	Spreckels	11041	32.58	16.96	186	85.8	3.8	73.9	0.0
SR- 20	97 CX 09	Spreckels	11984	32.77	18.31	214	86.0	3.3	94.6	0.0
SR- 21	5CG7540	Betaseed	13613	38.40	17.73	201	87.7	3.0	94.5	0.0
SR- 22	5KJ0142	Betaseed	13769	38.44	17.85	196	88.2	2.0	98.9	0.0
SR- 23	SS-287R	Spreckels	9231	27.05	17.03	187	86.0	4.4	54.6	0.0
SR- 24	$97 \mathrm{CX11}$	Spreckels	10929	32.73	16.74	180	85.9	3.3	87.3	0.0
SR- 25	H95786	Spreckels	10437	31.28	16.60	216	86.3	4.4	54.8	0.0

TEST 4398. CBGA SALINAS CODED RHIZO (cont.)										
Code No .	Variety	Source	Acre Yield		Sucrose	$\begin{gathered} \text { Beets/ } \\ 100^{\prime} \\ \hline \end{gathered}$	RJAP	Resistance		Root Rot
			Sugar	Beets						
			Lbs	Tons	앙	No.	\%	DI	${ }_{8} \mathrm{R}$ (0-4)	8
SR- 26	$97 \mathrm{CX15}$	Spreckels	10989	31.27	17.54	179	87.1	3.4	86.3	0.0
SR- 27	$97 \mathrm{CX02}$	Spreckels	11967	34.61	17.24	185	88.4	3.4	90.4	0.0
SR- 28	98CX26	Spreckels	10483	29.85	17.54	191	86.2	3.5	88.3	0.0
SR- 29	H95504	Spreckels	11151	32.97	16.91	181	86.7	3.4	86.5	0.0
SR- 30	H93203	Spreckels	9646	28.39	16.83	210	86.4	4.4	52.3	0.6
SR- 31	Beta 4581	Betaseed	12399	34.34	18.03	202	87.4	2.8	93.8	0.0
SR- 32	SS-781R	Spreckels	10580	30.46	17.36	188	86.4	3.4	82.8	0.0
SR- 33	98CX19	Spreckels	10311	30.64	16.78	185	86.7	3.9	69.3	0.0
SR- 34	$98 \mathrm{CX22}$	Spreckels	10474	31.45	16.61	181	86.0	3.1	92.8	0.0
SR- 35	SS-694R	Spreckels	10564	31.13	16.95	183	86.5	3.5	83.2	0.0
SR- 36	3BG6156	Betaseed	11783	33.97	17.28	225	88.2	3.5	81.5	0.0
SR- 37	$98 \mathrm{CX27}$	Spreckels	10304	30.98	16.68	188	86.0	3.3	92.6	0.0
SR- 38	SS-289R	Spreckels	9730	28.35	17.15	200	86.0	4.0	61.0	0.0
SR- 39	7CG7376	Betaseed	14478	39.06	18.49	169	88.0	2.8	96.7	0.0
SR- 40	98 CX 21	Spreckels	11333	32.28	17.52	202	87.5	3.2	88.2	0.0
SR- 41	Rizor	Spreckels	11975	32.85	18.22	197	86.5	3.3	90.0	0.5
SR- 42	3BG6170	Betaseed	11591	33.12	17.51	200	87.3	4.3	58.7	0.6
SR- 43	Rival	Spreckels	11420	32.38	17.62	181	86.0	3.3	92.8	0.0
SR- 44	SS-NB2R2	Spreckels	10325	30.19	17.16	182	86.7	3.4	85.5	0.0
SR- 45	SS-432R	Spreckels	10775	31.13	17.31	169	86.3	3.8	76.4	0.0
SR-46	SS-NB7R	Spreckels	10809	31.61	17.09	182	86.0	3.4	86.7	0.0
SR-47	98CX28	Spreckels	10050	29.44	17.04	189	85.2	4.0	65.8	0.0
SR- 48	98CX29	Spreckels	11122	32.54	17.05	195	86.3	3.1	91.7	0.0
SR- 49	US H11	Standard	7216	22.91	15.44	166	87.2	5.3	25.8	0.0
SR- 50	98 CX 32	Spreckels	11854	34.59	17.12	180	86.6	3.4	86.9	0.0

TEST 4398. CBGA SALINAS CODED RHIZOMANIA TEST, SALINAS, CA., 1998

(cont.)										
Code No.	Variety	Source	Acre Yield		Sucrose	$\begin{gathered} \text { Beets/ } \\ 100^{\prime} \\ \hline \end{gathered}$	RJAP	Resistance		Root Rot
			Sugar	Beets						
			Lbs	Tons	\%	No.	8	DI	\%R(0-4)	8
SR- 76	R776-89-5H31	USDA	10814	31.01	17.44	173	86.2	3.2	91.1	0.0
SR- 77	R736H50	USDA	11420	33.81	16.87	197	85.3	3.4	82.6	0.0
SR-78	US H11	USDA	7122	23.20	15.07	175	86.8	5.3	24.2	0.0
Mean			11077.6	32.01	17.26	189.5	86.6	3.5	81.6	0.04
LSD (.05)			1229.8	3.44	0.49	19.0	1.4	0.4	11.5	0.40
C.V. (\%)			11.3	10.95	2.87	10.2	1.7	9.0	10.2	791.11
F value			7.7**	5.45**	12.45**	6.5**	2.2**	10.9**	* 13.6**	0.95 NS

NOTES: Test 4398 was planted into two 78 variety $x 4$ replication sections, $4398-1$ and $4398-2$. Test 4398 was $\times 4 R, R C B)$ was in an area hand harvest and rhizomania. 98-2 (78V rhizomania. 4398-2 as chosen for not scored fter visual inspection, test 4398-1 Phizomania was scored on a scale of 0 to 9 where $9=$ severe. Because rhizomania was moderate, root symptoms formed a continuum and it was not completely obvious where to draw the line between resistance and susceptibility. Disease reaction for US H11 suggested that classes 0-3 were resistant and 4-9 susceptible. However, resistant varieties suggested that $0-4$ was resistant and 5-9 susceptible with regards to the Rz gene In table 4398-1, analyses were run both ways. Probably, where $0-3=$ resistant, the frequency of resistant plants was underestimated; where $0-4=r e s i s t a n t, ~ t h e ~ f r e q u e n c y ~ o f ~ r e s i s t a n t ~ p l a n t s ~ w a s ~ o v e r e s t i m a t e d . ~ D I ~=~$ disease index is the weighted mean of the ratings for each variety where a lower value suggests higher resistance.

TEST 4398-1 4 replications, RCB 22 ft . long			CBGA SALINAS CODED RHIZOMANIA TEST, SALINAS, CA., 1998							
					Planted: April 28, 1998 Harvested: October					
Code			Acre Yield		Beets/		RJAP			
No.	Variety	Source	Sugar	Beets	Sucrose	100^{\prime}			Resista	
			Libs	Tons	웅	No.	\%	DI	8R(0-4)	8 8 ($0-3)$
SR- 1	$97 \mathrm{CX14}$	Spreckels	9343	26.99	17.23	185	85.8	3.6	83.1	51.3
SR- 2	H945187	Spreckels	8208	24.44	16.79	159	88.3	4.0	67.3	37.7
SR- 3	5CG7497	Betaseed	10144	29.59	17.15	198	86.1	3.5	79.2	56.7
SR- 4	$97 \mathrm{CX12}$	Spreckels	7810	22.75	17.15	196	87.7	3.4	92.9	60.0
SR- 5	Beta 4684R	Betaseed	10142	28.10	17.98	183	85.2	2.6	97.8	83.0
SR- 6	7CG7304	Betaseed	9627	27.84	17.24	195	85.7	3.7	75.7	52.6
SR- 7	$97 \mathrm{CX10}$	Spreckels	10551	29.43	17.95	200	85.3	3.4	88.2	68.4
SR- 8	SS-778R	Spreckels	8395	25.19	16.67	197	87.0	4.7	50.2	34.1
SR- 9	5CG7514	Betaseed	8384	23.07	18.13	209	87.6	3.5	88.4	56.0
SR- 10	4KJ0164	Betaseed	9742	28.58	17.05	202	88.1	3.0	98.4	79.1
SR- 11	6CG7281	Betaseed	10146	28.63	17.70	159	84.8	3.4	96.3	58.2
SR- 12	Beta 4035R	Betaseed	9841	27.52	17.88	191	85.8	2.9	95.5	80.8
SR- 13	SS-338R	Spreckels	7631	22.27	17.13	181	86.2	4.2	55.8	41.7
SR- 14	Beta 4776R	Betaseed	11036	30.28	18.24	207	87.6	2.9	96.2	80.5
SR- 15	98CX30	Spreckels	7605	23.04	16.63	164	86.7	3.8	74.3	49.1
SR- 16	$97 \mathrm{XC08}$	Spreckels	8400	22.92	18.40	228	86.6	3.3	87.8	69.2
SR- 17	SS-NB5R	Spreckels	7743	22.22	17.38	163	87.3	3.7	77.3	51.6
SR- 18	98CX19	Spreckels	8230	23.97	17.17	182	86.9	3.4	81.4	58.7
SR-19	$98 \mathrm{CX16}$	Spreckels	8937	26.26	17.01	177	86.5	3.8	73.9	49.2
SR- 20	$97 \mathrm{CX09}$	Spreckels	10487	28.32	18.51	204	86.3	3.3	94.6	62.1
SR- 21	5CG7540	Betaseed	11969	33.67	17.77	184	88.2	3.0	94.5	77.3
SR- 22	5KJ0142	Betaseed	11278	32.03	17.59	193	87.7	2.0	98.9	94.0
SR- 23	SS-287R	Spreckels	7090	20.94	16.94	190	85.6	4.4	54.6	37.0
SR- 24	$97 \mathrm{CX11}$	Spreckels	8286	24.74	16.76	163	85.8	3.3	87.3	64.8
SR- 25	H95786	Spreckels	7479	22.96	16.27	210	85.9	4.4	54.8	37.6

		ST 4398-1.	LINAS	ED RHIZ (cont.	NIA TEST	ALINAS	A., 19			
Code			Acre Yield		Beets/Sucrose 100		RJAP	Resistance		
No	Variety	Source	Sugar	Beets						
			Ibs	Tons	\%	No.	$\stackrel{8}{8}$	DI	\%R(0-4)	${ }^{8} \mathrm{P}$ ($\left.0-3\right)$
SR- 26	$97 \mathrm{CX15}$	Spreckels	8182	23.54	17.41	172	86.9	3.4	86.3	59.4
SR- 27	97 CX 02	Spreckels	9519	28.10	16.95	163	88.5	3.4	90.4	62.1
SR- 28	98CX26	Spreckels	8780	25.24	17.40	175	86.9	3.5	88.3	59.0
SR- 29	H95504	Spreckels	9674	28.95	16.74	167	86.4	3.4	86.5	61.4
SR- 30	H93203	Spreckels	6852	21.10	16.23	205	85.5	4.4	52.3	31.5
SR- 31	Beta 4581	Betaseed	10226	28.58	17.89	190	87.1	2.8	93.8	78.0
SR- 32	SS-781R	Spreckels	9179	26.35	17.36	191	86.1	3.4	82.8	64.9
SR- 33	$98 \mathrm{CX19}$	Spreckels	8756	26.62	16.45	180	86.4	3.9	69.3	48.9
SR- 34	98 CX 22	Spreckels	8417	25.82	16.31	182	85.1	3.1	92.8	74.5
SR- 35	SS-694R	Spreckels	8126	24.07	16.89	182	86.5	3.5	83.2	56.6
SR- 36	3BG6156	Betaseed	9087	26.72	17.00	231	87.8	3.5	81.5	59.2
SR- 37	98 CX 27	Spreckels	8406	24.87	16.91	187	86.2	3.3	92.6	66.4
SR- 38	SS-289R	Spreckels	7327	21.53	17.05	188	86.6	4.0	61.0	51.0
SR- 39	7CG7376	Betaseed	11969	32.66	18.29	167	87.2	2.8	96.7	86.6
SR- 40	98 CX 21	Spreckels	8857	25.45	17.39	197	87.7	3.2	88.2	75.1
SR- 41	Rizor	Spreckels	10279	28.21	18.21	185	86.5	3.3	90.0	67.5
SR- 42	3BG6170	Betaseed	9511	27.04	17.56	198	87.2	4.3	58.7	35.0
SR- 43	Rival	Spreckels	9745	27.79	17.54	174	85.9	3.3	92.8	68.1
SR- 44	SS-NB2R2	Spreckels	7929	22.80	17.40	173	87.3	3.4	85.5	61.7
SR- 45	SS-432R	Spreckels	9193	26.78	17.19	184	85.7	3.8	76.4	48.7
SR- 46	SS-NB7R	Spreckels	9032	26.51	17.05	175	85.7	3.4	86.7	65.4
SR- 47	98CX28	Spreckels	8414	24.92	16.86	196	85.0	4.0	65.8	48.0
SR- 48	98 CX 29	Spreckels	8450	25.08	16.85	196	86.0	3.1	91.7	66.7
SR- 49	US H11	Standard	4264	14.58	14.64	172	86.9	5.3	25.8	10.0
SR- 50	98 CX 32	Spreckels	10129	29.98	16.90	169	86.4	3.4	86.9	58.8

TEST 4398-1. CBGA SALINAS CODED RHIZOMANIA TEST, SALINAS, CA., 1998

TEST 4398-1. CBGA SALINAS CODED RHIZOMANIA TEST, SALINAS, CA., 1998

TEST 4398-2. CBGA SALINAS CODED RHIZOMANIA TEST, SALINAS, CA., 1998

[^3]Spreckels Spreckels Betaseed Spreckels Betaseed Betaseed 0
-
0
0
0
0
0
0
0
0 Spreckels 0
0
0
0
0
0
0
0 Betaseed Betaseed Betaseed Spreckels Betaseed Spreckels Spreckels

 -
-
0
0
0
0
0
0
0 Betaseed Betaseed Spreckels Spreckels n
0
0
0
0
0
0
0
0
$97 \mathrm{CX14}$
H 945187 $97 \mathrm{CX12}$ 4684R 7CG7304 $97 \mathrm{CX10}$
 4KJ0164 6CG7281
 Beta 4776 R 98CX30 $97 \mathrm{XC08}$ SS-NB5R 98CX19 6
H_{x}
认
∞
0 97 CX 09 5CG7540 5KJ0142

 - N m

$$
\omega\ulcorner\infty \sigma 0
$$

 $\stackrel{\rightharpoonup}{6}$ 「
∞ on
ㄱN N N NN N SR-
SR-
SR-
SR-
SR-SR-
SR-
SR-
SR-
SR-

TEST 4398-2. CBGA SALINAS CODED RHIZ (cont.)								
Code No.	Variety	Source	Acre Yield		Sucrose	$\begin{gathered} \text { Beets/ } \\ 100^{\prime} \\ \hline \end{gathered}$	Root Rot	RJAP
			Sugar	Beets				
			Libs	Tons	8	No.	\%	8
SR- 26	$97 \mathrm{CX15}$	Spreckels	13796	39.00	17.66	187	0.0	87.3
SR- 27	$97 \mathrm{CX02}$	Spreckels	14416	41.12	17.54	207	0.0	88.3
SR- 28	98 CX 26	Spreckels	12185	34.47	17.67	206	0.0	85.5
SR- 29	H95504	Spreckels	12628	36.98	17.08	195	0.0	87.0
SR- 30	H93203	Spreckels	12440	35.67	17.44	215	0.6	87.2
SR- 31	Beta 4581	Betaseed	14573	40.11	18.18	214	0.0	87.8
SR- 32	SS-781R	Spreckels	11981	34.57	17.36	184	0.0	86.7
SR- 33	98CX19	Spreckels	11866	34.67	17.11	191	0.0	87.0
SR- 34	98 CX 22	Spreckels	12531	37.09	16.90	181	0.0	87.0
SR- 35	SS-694R	Spreckels	13003	38.19	17.01	183	0.0	86.4
SR- 36	3BG6156	Betaseed	14478	41.22	17.56	220	0.0	88.7
SR- 37	98 CX 27	Spreckels	12201	37.09	16.45	189	0.0	85.7
SR- 38	SS-289R	Spreckels	12134	35.17	17.25	213	0.0	85.5
SR- 39	7CG7376	Betaseed	16986	45.45	18.69	172	0.0	88.8
SR- 40	98CX21	Spreckels	13809	39.10	17.65	208	0.0	87.3
SR- 41	Rizor	Spreckels	13671	37.49	18.23	208	0.5	86.5
SR- 42	3BG6170	Betaseed	13671	39.20	17.45	201	0.6	87.4
SR-43	Rival	Spreckels	13095	36.98	17.70	188	0.0	86.1
SR- 44	SS-NB2R2	Spreckels	12721	37.59	16.91	191	0.0	86.1
SR- 45	SS-432R	Spreckels	12358	35.47	17.44	154	0.0	86.9
SR- 46	SS-NB7R	Spreckels	12586	36.72	17.14	189	0.0	86.2
SR- 47	98 CX 28	Spreckels	11687	33.96	17.21	183	0.0	85.4
SR- 48	98 CX 29	Spreckels	13795	40.01	17.25	195	0.0	86.7
SR- 49	US H11	Standard	10168	31.24	16.24	160	0.0	87.5
SR- 50	98 CX 32	Spreckels	13579	39.20	17.34	191	0.0	86.9

TEST 4398-2. CBGA SALINAS CODED RHIZOMANIA TEST, SALINAS, CA., 1998

Code No.	Variety	Source	Acre Yield		Sucrose	$\begin{gathered} \text { Beets/ } \\ 100^{\prime} \\ \hline \end{gathered}$	Root Rot	RJAP
			Sugar	Beets				
			Libs	Tons	$\underline{8}$	No.	$\underline{8}$	$\underline{8}$
SR- 51	97 Cx 01	Spreckels	12340	35.67	17.31	190	0.0	86.9
SR- 52	97 Cx 06	Spreckels	13176	37.69	17.45	190	0.0	87.0
SR- 53	$97 \mathrm{Cx13}$	Spreckels	11793	34.87	16.90	192	0.6	86.0
SR- 54	97 Cx 04	Spreckels	13237	39.50	16.75	201	0.0	87.2
SR- 55	98Cx31	Spreckels	13206	39.20	16.83	214	0.0	85.9
SR- 56	5KJ5061	Betaseed	12699	36.11	17.58	114	0.0	86.6
SR- 57	Rhizoguard	Spreckels	11979	36.68	16.33	205	0.0	87.8
SR- 58	98Cx20	Spreckels	12810	38.09	16.83	209	0.0	87.0
SR- 59	98 Cx 25	Spreckels	12087	36.78	16.43	183	0.0	87.5
SR- 60	2 J 5324	Betaseed	13589	37.74	18.01	191	0.0	87.3
SR- 61	Beta 4006R	Betaseed	12459	32.74	19.04	149	0.0	87.3
SR- 62	H93392	Spreckels	13172	38.29	17.20	221	0.0	85.4
SR- 63	$4 \mathrm{KJ0169}$	Betaseed	14811	42.43	17.48	225	0.5	88.3
SR- 64	$98 \mathrm{Cx17}$	Spreckels	13082	39.10	16.74	212	0.0	88.8
SR- 65	HM 3048	Hilleshog	13222	37.69	17.54	193	0.0	87.3
SR- 66	98Cx24	Spreckels	12005	34.87	17.23	184	0.0	85.6
SR- 67	H9555	Spreckels	12743	36.48	17.46	199	0.0	87.2
SR- 68	97 Cx 07	Spreckels	11961	34.97	17.13	195	0.0	86.6
SR- 69	SS-IV2R	Spreckels	11867	35.27	16.83	182	0.0	86.8
SR- 70	3BG6224	Betaseed	14655	40.69	18.01	142	0.0	86.1
SR- 71	7CG7391	Betaseed	15831	43.74	18.10	205	0.0	87.6
SR-72	$4 \mathrm{KJO166}$	Betaseed	14779	41.52	17.79	221	0.0	88.0
SR-73	Beta 4488R	Betaseed	13223	35.88	18.43	202	0.0	86.7
SR- 74	98 Cx 23	Spreckels	11957	35.47	16.86	187	0.0	87.2
SR-75	7CG7400	Betaseed	14314	40.99	17.46	192	0.0	86.2

Acre Yield	
Sugar	Beets
Ibs	Tons
11447	36.37
10906	38.39
10202	32.40

$\begin{array}{llllllll}10 & \kappa & 0 & \infty & \mathfrak{N} & 6 & 6 \\ 0 & 6 & 0 & \text { n } & 0 & 0 & 0 \\ \cdots & -1 & -1 & -1 & -1 & -1\end{array}$
166
$\varepsilon L \tau$
$\begin{array}{lllll}n & \ddots & \text { M } & 0 & \infty \\ H & 0 & 0 & 1 & 0 \\ H & -1 & -1 & \end{array}$
∞
0
-1

 N
$\stackrel{1}{5}$
$\begin{array}{lll}a & m & 9 \\ न & 0 & m \\ न & -1 & न\end{array}$
$\stackrel{\circ}{\circ}$
ने
N
$\begin{array}{llllll}N & -1 & \infty & 9 & -1 & 0 \\ 0 & \dot{n} & \cdots & 0 & \infty & 0 \\ & H & & & -1\end{array}$
－
Nr
ルनールーデ － Beets／
$\left\lvert\, \begin{array}{ll}0 & 6 \\ 0 & r \\ \sim & r\end{array}\right.$
170
171
न न न न Hन H $-$
Sucrose
$\frac{8}{8}$
15.69 15.69 14.15
15.71

16.11
 ज̆ ズ $\stackrel{n}{\stackrel{\infty}{\sim}}$ ज 14.73
13.91
14.48
14.85
14.94
14.71
14.71

 38.47
37.74
38.69
38.14
35.18
36.73
36.72
35.43

40.08 \square 12363
11743
11494
11271
11089
10841
10568

10172
荿
9676

Self－fertile，Aa，random－mated populations | Self－fertile，Aa，random－mated populations | |
| :--- | :--- |
| 7931 H 50 | F92－790－15CMS $\times 931(\mathrm{C})$ |
| 7926 H 50 | F92－790－15CMS $\times 926(C)$ |
| $7933 H 50$ | F92－790－15CMS $\times 6264-\#(C)$ |
| Z731H50 | F92－790－15CMS $\times 231(C)$ |
| $7932 C T H 50$ | F92－790－15CMS $\times 6260-63-\#(C)$ |
| CR711H50 | F92－790－15CMS \times CR11（C） |
| $7924 H 50$ | F92－790－15CMS $\times 924(C)$ |

Checks	
Rizor	9－3－97
SS－781R	9501614C（9－3－97）
B4776R	Beta 4776R． 7033 （9－1－97）
Self－sterile，O．P．breeding lines	
R576－89－18H50	F92－790－15CMS \times R476－89－18
Y772H50	F92－790－15CMS \times RZM Y672
צ771H50	F92－790－15CMS \times RZM Y671
R778H50	F92－790－15CMS \times R678
R776－89－5H50	F92－790－15CMS \times R576－89－5
Y774 450	F92－790－15CMS \times Y74（C）
צ769H50	F92－790－15CMS \times Y669
Y773H50	F92－790－15CMS \times RZM Y673R
C79－\＃breeding lines	
R779H50	F92－790－15CMS \times RZM R679
R736H50	F92－790－15CMS \times RZM R636
R753H50	F92－790－15CMS \times RZM R653
R746H50（Sp）	F92－790－15CMS \times RZM R646，R653
R746H50（Iso）	F92－790－15CMS \times RZM R646
R735H50	F92－790－15CMS \times RZM R635

TEST B198. EVALUATION OF TESTCROSS HYBRIDS, IMPERIAL VALLEY, 1997-98

	Clean	
Bolters		
Beets		

TEST B398. EVALUATION OF TOPCROSS HYBRIDS, IMPERIAL VALLEY, 1997-98 (B398)

Variety	Description	Acre Yiel		Sucrose	$\begin{gathered} \text { Beets/ } \\ 100^{\prime} \\ \hline \end{gathered}$		Clean Beets	NO3-N
		Sugar	Beets			Bolters		
		Lbs	Tons	8	No.	\%	8	Mean
Topcrossed with Y74								
Y774H50	F92-790-15CMS x Y74 (C)	11272	35.90	15.71	163	8.4	94.1	71
Y774 H 37	4807HO(C306/2CMS) \times Y74 (C)	11174	38.61	14.44	162	5.7	94.0	79
Y774H69	6869aa \times Y74 (C)	10351	34.60	14.95	166	3.4	95.0	72
Topcrossed with popn-931								
7931H37	4807HO(C306/2CMS) x 931 (C)	11012	38.89	14.18	165	2.9	93.2	90
7931H50	F92-790-15CMS x 931 (C)	10613	33.64	15.86	162	8.0	93.3	59
7931H69	6869aa $\times 931$ (C)	10436	34.55	15.11	161	3.9	94.7	55
Topcrossed with popn-CZ25								
2731H37	4807HO(C306/2CMS) $\times 231$ (C)	11110	38.13	14.55	160	3.1	94.2	111
z731H50	F92-790-15CMS \times z31 (C)	10531	33.66	15.64	163	9.6	93.1	46
Z731H69	6869aa $\times \mathrm{z31}$ (C)	10194	32.74	15.55	168	6.6	94.7	65
Topcrossed to other pollinators								
792 6H69	6869aa x 926(C)	10720	35.80	14.98	165	6.4	93.7	75
7924H37	4807HO (C306/2CMS) $\times 924$ (C)	10662	37.38	14.23	166	4.4	92.9	94
7924H50	F92-790-15CMS $\times 924$ (C)	10388	33.11	15.67	164	10.1	92.7	54
CR711H69	6869aa x CR11 (C)	10027	34.18	14.61	166	5.3	94.1	79
7924H69	$6869 \mathrm{aa} \times 924$ (C)	9699	32.84	14.79	164	8.2	94.2	87
Mean		10546.3	34.74	15.21	163.4	5.2	94.0	74.7
LSD (.05)		892.4	2.62	0.79	11.3	3.9	1.5	47.4
C.V. (\%)		8.6	7.64	1.60	7.0	77.2	1.6	64.4
F value		3.0**	5.63**	2.42**	1.9NS	10.3**	2.4**	1.9**

TEST B298．AREA 5 CODED NON－RHIZOMANIA YIELD TEST，IMPERIAL VALLEY，1997－98 Planted：September 11， 1997 Harvested：June 2－4， 1998

9	$\because \square^{\circ}$	$96 \times$ ？	∞ ¢ \quad 「．	$\cdots 9 \vdash$	の
	のூブがへ		のัのパの		
ค 0 ¢	$\infty \infty$－	のトに		60	
－「ल゙	oro	$\dot{m} \infty$	$\dot{m} \times \dot{\sim}$	aior	－¢

Acre Yield

Sugar	Beets
Lbs	Tons

$\because \underset{ }{r}$

$\dot{N} \infty \stackrel{\sim}{N}$
 8
TEST B298. AREA 5 CODED NON-RHIZOMANIA YIELD TEST, IMPERIAL VALLEY, 1997-98

Code	Variety	Source	(cont.)		Sucrose	$\begin{gathered} \text { Beets/ } \\ 100^{\prime} \\ \hline \end{gathered}$	Bolters	Clean Beets	NO3-N
			Acre Yield						
			Sugar	Beets					
			Libs	Tons	8	No.	8	\%	Mean
CBGA entries (cont.)									
A5N -25	H95786	Spreckels	11442	39.49	14.47	182	7.1	94.3	103
-26	5CG7540	Betaseed	11488	36.06	15.94	177	1.5	93.3	109
-27	SS-778R	Spreckels	11891	38.90	15.32	181	10.7	94.9	96
-28	Beta 4684R	Betaseed	11074	33.85	16.35	181	3.2	96.0	86
-29	Beta 4581	Betaseed	10712	33.22	16.08	179	15.4	94.7	119
USDA Checks									
R778H37	4807 (C306/2CMS) \times	R678	11943	40.48	14.74	164	1.1	94.4	100
R776-89-5H37	4807 (C306/2CMS) \times	R576-89-5	12094	38.73	15.63	176	1.5	94.0	71
Y769H37	4807 (C306/2CMS) \times	Y669	11743	41.60	14.11	173	4.8	93.3	141
Mean			11170.7	36.03	15.55	175.2	7.5	94.4	115.2
LSD (.05)			1090.5	3.33	0.74	10.3	5.1	1.4	56.6
C.V. (\%)			9.9	9.38	4.86	6.0	68.9	1.5	49.9
F value			3.4**	5.81**	10.35**	2.8*	13.6**	2.5**	3.9**

A5N - 1	97CX06
- 2	Beta 4006R
- 3	SS-781R
- 4	$97 \mathrm{CX10}$
- 5	$97 \mathrm{CX07}$
- 6	$7 \mathrm{CG7391}$
- 7	$97 \mathrm{CX04}$
- 8	Rival
- 9	Beta 4035R
-10	SS-694R
-11	5KJ0142
-12	7CG7400
-13	Rizor
-14	97 CX 01
-15	97 CX 02
-16	US H11
-17	$97 \mathrm{CX09}$
-18	7CG7304
-19	Beta 4776R
-20	HM 3048
-21	SS-NB7R
-22	SS-IV2R
-23	$97 \mathrm{CX08}$
-24	4KJ0164

TEST B298. AREA 5 CODED NON-RHIZOMANIA YIELD TEST, IMPERIAL VALLEY, 1997-98

Code	Variety	Recover. Sugar	Recover. Sugar	Recover. Sugar	Known SugarLoss	Sodium	Potassium	$\mathrm{NH}_{2}-\mathrm{N}$	Impur.
		1bs/a	1bs/t	앙	lbs/a	ppm	ppm	ppm	Value
CBGA entries (cont.)									
A5N -25	H95786	10108	256	88.3	1335	387	2525	374	11222
-26	5CG7540	10160	282	88.4	1329	440	2392	499	12255
-27	SS-778R	10515	271	88.4	1377	411	2524	429	11821
-28	Beta 4684R	9861	291	88.9	1213	302	2391	518	11958
-29	Beta 4581	9533	286	88.7	1179	322	2474	483	11897
USDA checks									
A5N -30	R778H37	10280	254	85.9	1663	419	2768	559	13697
-31	R776-89-5H37	10670	276	88.1	1424	373	2588	472	12262
-32	Y769H37	10074	242	85.7	1669	455	2866	479	13306
Mean		9820.8	273.6	87.8	1349.8	376.1	2488.8	516.6	12446.1
LSD (.05)		1052.4	18.5	2.3	247.3	122.5	276.7	122.0	1884.9
C.V. (\%)		10.9	6.9	2.7	18.6	33.1	11.3	24.0	15.4
F value		3.3**	9.2**	5.0**	5.8**	4.1**	6.3**	3.4**	4.0

-

Variety	Description			Sucrose	$\begin{gathered} \text { Beets/ } \\ 100^{\prime} \\ \hline \end{gathered}$	Bolters	Clean Beets	NO3-N
		Acre Yield						
		Sugar	Beets					
		Libs	Tons	8	No.	\%	8	Mean
S_{1} et al. progeny lines from $S^{\text {f }}$, Aa popns								
7918-21H50	F92-790-15CMS x RZM 6918-21	10838	31.80	17.05	150	0.0	91.7	21
6918-3H50	F92-790-15CMS \times RZM 4918-3	10486	31.29	16.81	149	2.3	85.8	15
6918-12H50	F92-790-15CMS x RZM 4918-12	10093	30.14	16.83	149	4.4	90.2	20
6913-70H50	F92-790-15CMS x 5913-70	9608	29.26	16.46	137	11.5	90.2	22
7911-4-10H50	F92-790-15CMS x RZM 6911-4-10	9596	27.96	17.17	147	0.5	86.4	8
Testcrosses to C306/2CMS								
R778H37	4807HO(C306/2CMS) \times R678	11022	34.35	15.98	150	0.4	91.2	33
Y769H37	4807HO (C306/2CMS) \times Y669	10588	34.86	15.23	150	1.8	90.4	55
2731H37	4807HO (C306/2CMS) $\times 231$ (C)	10399	32.16	16.25	147	0.8	91.5	39
R776-89-5H37	4807HO (C306/2CMS) \times R $576-89-5$	10153	31.57	16.07	137	0.0	92.0	37
Y774H37	4807HO (C306/2CMS) \times Y74 (C)	9556	31.07	15.35	151	8.2	90.2	39
Testcrosses to popn-869								
CR711H69	6869aa x CR11 (C)	9464	28.99	16.31	140	6.5	91.3	29
R778H69	6869aa x R678	9255	27.98	16.57	137	3.7	91.8	28
Y774H69	6869aa x Y74 (C)	9217	28.61	16.08	144	4.6	92.2	44
Y769H69	6869aa x Y669	9067	28.14	16.15	145	1.8	92.6	39
Z731H69	6869aa x $\mathrm{z31}$ (C)	9036	27.51	16.42	141	4.0	89.8	22
7924H69	6869aa x 924 (C)	9013	26.87	16.75	146	2.9	89.9	22
R776-89-5H69	6869aa x R576-89-5	8946	26.43	16.94	154	2.3	92.2	28
7926H69	6869aa x 926 (C)	8910	27.64	16.14	153	5.0	91.5	36
7931H69	6869aa x 931 (C)	8856	26.48	16.74	146	1.9	89.9	12
Testcrosses to 711-4-7mm								
z731H7	6911-4-7HO $\times 231$ (C)	10429	30.72	17.04	146	22.4	88.4	13
R778H7	6911-4-7HO \times R678	8935	26.25	17.00	139	1.5	89.9	9
R776-89-5H7	6911-4-7НО \times R576-89-5	8644	25.37	17.05	145	13.2	89.8	16
Y769H7	6911-4-7НО \times Y669	8602	26.96	16.00	146	11.9	92.3	27
Testcross to C890-7 (SES)								
R778H17M	6817Maa x R678	8560	25.95	16.53	142	1.4	91.8	37

TEST B698. EVALUATION OF EXPERIMENTAL HYBRIDS UNDER RHIZOMANIA, IMPERIAL VALLEY, $1997-98$

TEST B798. EVALUATION OF POPULATION HYBRIDS UNDER RHIZOMANIA, IMPERIAL VALLEY, 1997-98

Variety	Description	Acre Yield		Sucrose	$\begin{gathered} \text { Beets/ } \\ 100^{\prime} \\ \hline \end{gathered}$	Bolters	Clean Beets	NO3-N
		Sugar	Beets					
		Lbs	Tons	\%	No.	\%	앙	Mean
Checks								
Rizor	9-3-97	10465	31.93	16.85	154	17.3	92.8	51
R778H50	F92-790-15CMS \times R678	10465	31.79	16.50	143	3.9	91.8	47
R776-89-5H50	F92-790-15CMS \times R576-89-5	9578	28.91	16.57	140	4.5	92.8	50
B4776R	Beta 4776.7033 (9-1-97)	9462	28.51	16.59	153	0.0	92.4	81
TC of Progeny Lines from popns								
R778H31-4	6831-4aa \times R678	10213	32.22	15.83	142	0.0	93.2	54
R778H59-8	6859-8aa x R678	10033	29.28	17.13	142	0.0	93.0	30
R778H64	5864-14HO \times R678	9257	28.94	16.12	133	0.5	94.0	47
R778H93	6891-10HO \times R678	9059	28.61	15.91	142	1.6	93.2	52
R776-89-5H27	6831-4HO \times R576-89-5	9348	29.35	15.99	138	2.1	92.0	39
R776-89-5H7	6911-4-7HO x R576-89-5	9245	28.39	16.32	133	10.7	90.9	20
R776-89-5H66	4867-1H50 \times R576-89-5	9073	27.05	16.78	125	7.2	92.2	25
R776-89-5H10	5911-4H50 x R576-89-5	8640	26.07	16.60	140	8.9	90.1	31
Popn Hybrids								
R776-89-5H69	6869aa \times R576-89-5	10389	31.67	16.50	148	1.8	93.1	32
R776-89-5H31	6931aa x R576-89-5	10368	31.18	16.66	139	2.2	92.1	31
R776-89-5H11	5911-4maa x R576-89-5	9227	28.08	16.46	130	3.2	93.7	27
R776-89-5H13	6913-70aa \times R576-89-5	8969	29.60	15.20	136	27.2	92.1	56
R778H18	$6818 \mathrm{maa} \times \mathrm{R} 678$	11253	33.49	16.81	140	1.5	92.0	24
R778H87	5890aa x R678	9373	28.53	16.43	147	0.0	92.3	28
R778H17M	$6817 \mathrm{Maa} \times \mathrm{R} 678$	8953	28.00	15.98	135	1.5	92.3	44
R778H12	6812maa \times R678	8142	25.23	16.15	145	13.8	92.5	31

TEST B798. EVALUATION OF POPULATION HYBRIDS UNDER RHIZOMANIA, IMPERIAL VALLEY, $1997-98$

Variety	Description	Acre Yield			$\begin{gathered} \text { Beets/ } \\ 100^{\prime} \\ \hline \end{gathered}$		Clean Beets	NO3-N
		Sugar	Beets	Sucrose		Bolters		
		Libs	Tons	\% 8	No.	8	\%	Mean
Popn Hybrids (cont.)								
R778H34	6834aa x R678	10841	32.22	16.88	151	4.3	92.7	22
R778H33	6833aa x R678	10526	31.95	16.57	140	0.5	93.6	44
R778H38M	6837Maa x R678	9849	29.91	16.45	136	2.2	91.5	33
R778H28	6828aa \times R678	9110	27.47	16.58	143	11.8	93.3	19
Mean		9672.1	29.52	16.41	140.6	5.3	92.5	38.2
LSD (.05)		1030.6	3.10	0.67	15.3	5.4	2.3	26.0
C.V. (\%)		10.8	10.66	4.16	11.0	104.2	2.5	69.1
F value		4.5**	3.68**	3.00*	1.6*	11.9**	1.2NS	2.5*

TEST B898. EVALUATION OF PROGENY LINES UNDER RHIZOMANIA, IMPERIAL VALLEY, 1997-98

Variety	Description	Acre Yield		Sucrose	$\begin{gathered} \text { Beets/ } \\ 100^{\prime} \end{gathered}$	Bolters	Clean Beets	NO3-N
		Sugar	Beets					
		Libs	Tons	8	No.	\%	8	Mean
Topcrosses with C78 (cont.)								
R778H18-15	6818-15aa x R678	9991	31.46	15.86	132	4.3	93.7	60
R778H18-23	6818-23aa \times R678	9813	30.94	15.87	145	3.0	92.8	40
R778H18-7	6818-7aa x R678	9769	30.26	16.14	131	0.0	92.8	58
R778H18-14	6818-14aa \times R678	9622	30.82	15.65	146	0.0	92.2	59
R778H18-12	6818-12aa x R678	9297	28.56	16.27	140	5.8	92.5	35
R778H18-1	6818-1aa x R678	9092	28.31	16.02	135	0.9	92.1	58
R778H18-11	6818-11aa x R678	9007	29.34	15.41	124	0.0	90.6	59
Mean		9740.6	31.05	15.69	137.0	4.0	93.0	63.1
LSD (.05)		2011.9	5.97	1.16	28.2	6.4	2.5	50.6
C.V. (\%)		14.6	13.63	5.22	14.6	114.0	1.9	56.9
F value		0.6 NS	0.76 NS	1.00 NS	1. ONS	4.4**	1.5NS	1.9*

NOTES: See tests B198, B498 \& B698. $6818=C 890-8 \approx C 790$ with rhizomania resistance from R22 (C51). $6818=\#=$ monogerm, S_{1} progeny families being evaluated for $S Y$ GCA in test B898 and for resistance to rhizomania under high temperature conditions in test $B 1198$ to be harvested in July.
TEST B598. AREA 5 CODED RHIZOMANIA YIELD TEST, IMPERIAL VALLEY, 1997-98

(cont.)
TEST B598. AREA 5 CODED RHIZOMANIA YIELD TEST, IMPERIAL VALLEY, 1997-98

Code No.	Variety	Source	Acre Yield		Sucrose	$\begin{gathered} \text { Beets/ } \\ 100^{\prime} \\ \hline \end{gathered}$	Bolters	Clean Beets	NO3-N	Yellows
			Sugar	Beets						
			Lbs	Tons	-	No.	\%	-	Mean	Score
CBGA entries (cont.)										
A5R -25	$97 \mathrm{CX0} 2$	Spreckels	10436	33.36	15.65	132	5.3	92.8	51	2.4
-26	H95786	Spreckels	10321	34.92	14.77	165	2.0	91.0	48	6.1
-27	Rival	Spreckels	9057	26.62	17.02	166	14.2	90.1	37	4.8
-28	SS-781R	Spreckels	10216	32.44	15.76	149	2.4	92.4	36	3.3
-29	97CX10	Spreckels	10090	29.63	17.00	165	12.4	90.5	50	5.0
-30	Rhizoguard	Spreckels	8203	25.29	16.22	158	0.3	93.3	34	4.6
-31	Beta 4581	Betaseed	10381	30.09	17.25	152	13.6	90.3	39	4.9
-32	7CG7304	Betaseed	11013	36.87	14.93	152	20.2	89.8	88	4.1
-33	SS-694R	Spreckels	8740	27.14	16.08	161	7.1	90.7	37	4.5
USDA entries										
R776-89-5H37	4807 (C306/2CMS)	x R576-89-5	11078	34.12	16.36	147	1.5	89.6	25	4.6
Y774 ${ }^{\text {2 }}$ 37	4807 (C306/2CMS)	x Y74 (C)	9890	35.78	13.82	157	5.0	86.9	56	5.3
צ769H69	6869aa x Y669		10186	32.35	15.88	161	5.5	89.5	50	4.1
Mean			9851.4	30.87	16.00	156.8	5.2	91.0	58.4	4.7
LSD (.05)			1189.4	3.69	0.76	14.4	4.5	2.4	39.5	1.1
C.V. (\%)			12.3	12.12	4.82	9.4	88.5	2.7	68.7	23.1
F value			4.6**	5.99**	9.62**	2.7**	9.8**	3.4**	5.0**	10.5**
NOTES: Test appeared to be 100% infected with whitefly vectored lettuce chlorosis virus (LCV color and symptoms, differences in reaction to LCV may have occurred, but symptom expression rhizomania, low nitrogen status, insect feeding, and powdery mildew. Powdery mildew develop root symptoms were mild. Infection and effects of rhizomania appeared to be variable across increased variability and CV's.										
Test was scored for foliar yellowing on 6-2-98. Yellowing appeared to be primarily due to have been enhanced by rhizomania, insect feeding, powdery mildew, plant age, low nitrogen sta observation times in January, April, May and June, entries A5R-1 and A5R-20 were the most yel entries $A 5 R-9,-13,-15, \&-32$ were the greenest.										

TEST B598. AREA 5 CODED RHIZOMANIA YIELD TEST, IMPERIAL VALLEY, 1997-98

Code	Variety	Recover. Sugar	Recover. Sugar	Recover. Sugar	Known SugarLoss	Sodium	Potassium	$\mathrm{NH}_{2}-\mathrm{N}$	Impur.
		1bs/a	1bs/t	\%	1bs/a	ppm	ppm	ppm	Value
CBGA entries									
A5R - 1	5KJ0142	10558	314	92.3	884	329	1880	304	8741
- 2	Beta 4776R	9049	303	91.0	911	465	1837	398	10006
- 3	US H11	6043	265	89.6	714	400	2227	349	10283
- 4	SS-IV2R	9045	272	87.7	1281	374	2298	589	12647
- 5	$97 \mathrm{CX0} 8$	8586	304	89.8	988	451	2196	456	11398
- 6	Beta 4684R	8995	306	90.9	919	318	2078	410	10201
- 7	SS-IV2	8483	269	89.5	1007	426	2101	399	10534
- 8	Beta 4035R	9916	309	91.6	916	349	2044	320	9374
- 9	SS-NB7R	8645	292	89.5	1035	328	2345	476	11530
-10	SS-778R	8993	269	88.7	1152	424	2435	402	11390
-11	7CG7400	8303	296	89.5	1007	460	2321	436	11550
-12	$97 \mathrm{CX0} 9$	9714	310	90.3	1031	337	2221	449	11001
-13	$97 \mathrm{CX04}$	9636	272	89.1	1164	433	2321	370	10834
-14	$4 \mathrm{KJ0164}$	8305	264	87.4	1204	648	2360	476	12693
-15	Beta 4006R	9061	311	92.4	745	318	1559	372	8538
-16	5CG7540	8866	279	88.2	1190	586	2334	470	12348
-17	97 CX 07	9365	277	88.2	1253	334	2330	549	12211
-18	HM 3048	7891	302	90.9	811	324	2033	406	10072
-19	$97 \mathrm{CX01}$	8958	290	90.4	964	322	2167	394	10289
-20	HM 3013	7799	284	91.8	708	402	1969	222	8440
-21	97CX06	8352	293	90.8	867	361	1992	388	9926
-22	Beta 4684	8394	293	91.6	773	329	1922	312	8917
-23	Rizor	9338	309	91.2	896	271	2062	403	9929
-24	7CG7391	9131	261	87.0	1371	702	2617	411	12902

TEST B598. AREA 5 CODED RHIZOMANIA YIELD TEST, IMPERIAL VALLEY, 1997-98
(cont.)

Code	Variety	Recover. Sugar	Recover. Sugar	Recover. Sugar	Known SugarLoss	Sodium	Potassium	$\mathrm{NH}_{2}-\mathrm{N}$	Impur.
		lbs/a	lbs/t	8	1bs/a	ppm	ppm	ppm	Value
CBGA entries (cont.) - - - - - - -									
A5R -25	97 Cx 02	9344	280	89.6	1092	341	2311	411	10870
-26	H95786	9244	265	89.6	1077	438	2405	276	10168
-27	Rival	8231	310	91.1	826	289	2059	414	10089
-28	SS-781R	9090	281	89.2	1126	353	2244	475	11361
-29	$97 \mathrm{CX10}$	9155	309	90.8	935	315	2089	434	10451
-30	Rhizoguard	7502	297	91.5	701	342	2015	309	9163
-31	Beta 4581	9416	313	90.7	964	261	2141	466	10698
-32	$7 \mathrm{CG7304}$	9517	258	86.4	1496	476	2825	502	13494
-33	SS-694R	7867	290	90.3	873	367	2129	402	10421
USDA entries									
A5R -34	R776-89-5H37	10041	297	90.8	1037	429	2115	336	9981
-35	Y774H37	8674	243	87.8	1216	554	2442	336	11231
-36	Y769H69	9180	287	90.2	1006	464	2129	347	10243
Mean		8849.1	288.1	89.9	1002.3	397.6	2180.6	400.7	10649.6
LSD (.05)		1068.6	17.2	1.7	217.3	107.2	230.1	111.2	1542.0
C.V. (\%)		12.3	6.1	1.9	22.0	27.4	10.7	28.2	14.7
F value		4.5**	9.3**	6.1**	5.9**	6.8**	7.7**	3.5**	5.0**

NOTES: Test appeared t be 100% infected with whitefly vectored lettuce chlorosisvirus (ICV). Based upon foliar color and symptoms, differences in reaction to LCV may have occurred, but symptom expression was confounded by rhizomania, low nitrogen status, insect feeding, and powdery mildew. Powdery mildew developed late. Rhizomania, root symptoms were mild. Infection and effects of rhizomania appeared to be variable across this test leading to increased variability and CV's. Test was scored for foliar yellowing on 6-2-98. Yellowing appeared to be primarily due to LCV, but yellowing may have been enhanced by rhizomania, insect feeding, powdery mildew, plant age, low nitrogen status, etc. At all observation times in January, April, May and June, entries A5R-1 and A5R-20 were the most yellowed. In April, entries A5R-9, -13, -15 , \& -32 were the greenest.
TEST B998．AREA 5 CODED RHIZOMANIA OBSERVATION TEST UNDER SEVERE RHIZOMANIA， IMPERIAL VALLEY，CA．，1997－98
Planted：September 10， 1997 Not harvested for yield

$$	$\left\|\begin{array}{l} 0 \\ \mu \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$			$\begin{array}{llll} \infty & 0 & 0 & \infty \\ \sim & 0 & 0 & m \end{array}$	$\begin{array}{llll} n & 0 \\ n & \infty \\ 0 & \infty \\ \hline \end{array}$	$\begin{array}{llll} \infty & \infty \\ \infty \\ n & \sim \\ i & \infty \\ \hline \end{array}$	ค $\infty<\infty<\infty$
N	0 0 0 0 0 \sim	$\begin{array}{ll} n & n \\ 0 & 0 \\ 0 & \text { n } \end{array}$		$\begin{array}{lll} n \\ 0 & \text { m } \\ 0 & \text { n } \\ \hline \end{array}$?	$\begin{array}{llll} 0 & 0 & 0 & \text { m } \\ 0 & \text { n } \\ 0 & \text { ir } \end{array}$
	$\infty 1$	$\stackrel{r}{\sim} \dot{\sim} \dot{N}^{0} \dot{\infty}$	$\therefore \dot{\sim} \times 0$				
	｜	$\stackrel{\sim}{\sim} \stackrel{m}{\sim} \stackrel{n}{\sim}$	$\stackrel{\sim}{\sim} \stackrel{\infty}{\sim}{ }_{\sim}^{\sim} \stackrel{n}{\sim}$	$\stackrel{\wedge}{\sim} \stackrel{\sim}{\sim}$ N	¢ N N ${ }_{\sim}^{\sim}$	$\stackrel{\sim}{\sim} \stackrel{6}{\sim} \stackrel{\sim}{\sim}$	구N $\stackrel{\infty}{\sim} \stackrel{n}{\sim} \stackrel{n}{\sim} \stackrel{n}{N}$
		$\stackrel{\infty}{N} \stackrel{\circ}{N} \stackrel{\circ}{m}$		$\stackrel{\sim}{\sim} \stackrel{\sim}{\sim} \stackrel{\sim}{N}$		$\underset{\mu}{\mu} \stackrel{N}{N}_{\infty}^{\infty} \stackrel{ }{N}$	$\stackrel{\circ}{\sim} \stackrel{0}{N} \text { 있N } \stackrel{o}{N}$
$\begin{aligned} & 0 \\ & 0 \\ & 4 \\ & j \\ & 0 \\ & 0 \end{aligned}$			$\begin{array}{ccc} 0 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \ddot{0} \\ 0 & 0 & 0 \\ \cline { 1 - 1 } & 0 & 0 \\ 0 & 0 \\ 0 & 0 & 0 \\ & 0 & 0 \end{array}$				

1 －row plots， $18 \mathrm{ft}$. long 36 entries $\times 4$ reps．sequential
1 －row plots， $18 \mathrm{ft}$. long ＇ron

AREA 5 CODED RHIZOMANIA OBSERVATION TEST UNDER SEVERE RHIZOMANIA, IMPERIAL VALLEY, CA., 1997-98

Code	TEST B998	Source	(cont.)				
			Stand Count	14 July 1998			$\frac{02 \text { June }}{\text { Yellows }}$
				plants at Harvest	Dead plants	RZM	
			No.	No.	8	Score	Score
27	Rival	Spreckels	31	28	1.6	1.3	5.0
28	SS-781R	Spreckels	29	24	8.6	1.5	5.3
29	$97 \mathrm{CX10}$	Spreckels	30	26	10.4	1.5	6.0
30	Rhizoguard	Spreckels	30	27	9.9	1.8	6.8
31	Beta 4581	Betaseed	31	25	6.6	1.8	7.5
32	7CG7304	Betaseed	30	24	2.2	0.3	4.8
33	SS-694R	Spreckels	29	26	3.0	0.8	5.5
34	7926H50	USDA	29	23	13.1	1.5	5.5
35	Y774 50	USDA	30	26	6.7	0.8	5.5
36	R746H50	USDA	28	21	9.6	0.5	4.5
Mean			29.1	25.3	6.7	1.1	5.7
LSD (.05)			4.3	3.9	10.8	1.1	1.8
C.V. (\%)			10.5	11.1	115.1	70.6	22.3
F value			0.6 NS	1.6*	2.5**	1.3NS	2.5**

Notes for B998, B1098, B1198: RZM visually scored on 14 July 1998 from 0 to 5 , where $0=100 \%$ alive and vigorous plot; $1=$ good vigor and survival; $2=$ reduced vigor and fewer alive; 3 = intermediate vigor and survival; $4=$ poor, low vigor, most plants dead; $5=100 \%$ of plants dead.
$\%$ Dead plants based upon actual counts of living vs. dead plants 14 July 98 , where living $=$ any plant with green. Stand counts in October 97 shortly after thinning.
Usually US H11 and other fully rhizomania susceptible entries completely collapse in the high temperatures when infected with rhizomania. In 1998 El Niño conditions of more moderate temperatures in Imperial Valley, rhizomania infected plants continued to live.
TEST B1098．EVALUATION OF LINES UNDER HIGH TEMPERATURE，RHIZOMANIA CONDITIONS IN A LATE HARVEST（GERMPLASM FROM R22，C51），IMPERIAL VALIEY，CA．，1997－98 72 entries x 4 replications，sequential
1－row plots， $18 \mathrm{ft}$. long
Planted：September 10， 1997 Not harvested for yield
 oro oron on
$7 \circ \circ 9$

0	
4	
0	
0	0
0	0

Stand

9－3－97
$9-1-97$
HH103， 1997
$9-3-97$
1997
RZM－8S R322R4，．．．（C51）
RZM－ER R526
U86－37 x RZM Bvm－UK
RZM R539（C37R，quant．）
RZM－ER Y568
RZM Y569
InC．Y669
RZM－ER R578，／2，\％
RZM－ER－8S R578
RZM－ER R580，NB，\％
RZM－ER R580－\＃
RZM－ER R580－45
RZM－ER R570
RZM－ER R576
RZM－ER R581
RZM－ER R581－43
InC．R576－89－5
RZM－ER R5408，
RZM－R635（C79－7，SES）
Variety
Description
14 June 1998
Harvest Plants

		$\begin{aligned} & \infty r \text { n } 0 \\ & \dot{\omega} \dot{\sim} \dot{\sim} \end{aligned}$		$\begin{aligned} & \text { r } \underset{\sim}{\sim} \sim \\ & \dot{\sim} \underset{\sim}{\sim} \underset{\sim}{\infty} \end{aligned}$	
$\stackrel{1}{\sim} \stackrel{n}{N}{ }_{\sim}^{N} \stackrel{\infty}{\sim}$	$\underset{\sim}{\sim} \stackrel{N}{N} \underset{N}{N}$	N N N N	$\stackrel{n}{\sim} \stackrel{n}{N} \stackrel{N}{N}$	$\stackrel{\wedge}{N} \underset{N}{N} \stackrel{H}{N}$	$N \underset{N}{N} \stackrel{\rightharpoonup}{\mathrm{~N}}$
	$\cdots \stackrel{\infty}{\infty}$	がブへ	へへが	$\stackrel{\sim}{\sim} \times$	$\stackrel{\sim}{\sim}{ }^{\sim}$

Rival Rival US H11 R522（Sp） R726
R727A R639 Y769（Iso） Y769（Sp） R778（Iso） R778\％ R780（Iso） R780／2
10
1
1
0
∞
∞
0 R770
R776
R781

[^4]TEST B1098. EVALUATION OF LINES UNDER HIGH TEMPERATURE, RHIZOMANIA CONDITIONS IN A LATE HARVEST (GERMPLASM FROM R22,C51), IMPERIAL VALLEY, CA., 1997-98

 R724 97-C37 R779
 Y766 Y767 (Sp) Y771 Y772 Y 772 (Sp)
Y773
Y773 (Sp) Y775 Y765
N724
CR711 CR711
TEST B1098. EVALUATION OF LINES UNDER HIGH TEMPERATURE, RHIZOMANIA CONDITIONS VALLEY, CA., 1997-98 ARVEST (GERMPLASM FROM R22,C51), IMPERIAL
(cont.)

Variety	Description	Stand Count	14 June			$\frac{13 \text { May }}{\text { Bolting }}$
			Plants at Harvest	$\begin{gathered} \text { Dead } \\ \text { Plants } \end{gathered}$	RZM	
		No.	No.	\%	Score	Score
2725 (C)	z725-2730-\# (C) aa \times A	26	25	14.7	2.3	1.1
Z731	6931aa $\times 231$ (C)	27	26	10.5	2.0	0.0
7747	Inc. $5747(\mathrm{~A}, \mathrm{aa})$	24	22	25.9	3.0	0.0
7931	6931 aa $\times 931$ (C)	29	27	11.2	2.5	1.9
7926	6931aa x 926 (C)	29	26	11.2	2.0	2.1
7927 (Sp)	6926,6927aa $\times 926$ (C)	29	25	3.0	1.5	2.9
7927 (Iso)	RZM-ER 5921H18	28	25	4.7	1.0	4.5
7920 NB	NB-RZM 5920	24	23	16.2	2.0	0.0
7923	RZM-ER 5922,5923	26	24	4.3	1.3	3.4
7932CT	Inc. 6260-63-\# (C)	28	26	30.3	2.8	0.0
7933	Inc. 6264-\# (C)	26	23	28.3	2.8	1.0
7924	6924,29,30aa x 924 (C) (tagged)	28	26	32.8	2.8	0.9
US H11	1997	26	24	44.3	2.5	1.0
R522 (Sp)	RZM-8S R322R4, ... (C51)	25	23	2.1	1.0	28.1
7818 m (Sp)	RZM 6818maa $\times 848$ (C)	27	25	21.8	2.3	0.0
7818\%M	RZM-ER 5818	26	23	31.9	2.3	6.1
7818/2M	RZM 6818	25	24	23.6	2.5	1.1
7818T-0	T-0 6818B-\# (C) , ...	30	24	27.5	2.3	0.0
7838m	6828...aa x 838 (C)	28	27	20.1	3.0	0.0
7835m	6833...aa $\times 835$ (C)	30	30	15.1	2.8	0.0
7848	0790aa $\times 848$ (C)	29	26	31.0	2.8	0.0
7810 NBM	NB-RZM 5810M	29	25	13.4	2.8	0.0
7869 NBm	NB-RZM 5869m	31	29	12.5	2.5	0.0
7890	RZM-ER 5890	26	23	17.6	2.5	0.0
Mean		26.4	24.3	14.6	1.9	3.2
LSD (.05)		4.5	6.0	14.3	0.8	7.0
C.V. (\%)		12.2	17.6	70.2	31.1	155.8
F value		1.7**	1.3NS	3.9**	5.2**	11.2**

TEST B1198. EVALUATION OF TESTCROSSES AND MONOGERM LINES FOR C51 (R22) TYPE RESISTANCE
Planted: September 10, 1997
Not harvested for yield
$\frac{\frac{13 \text { May }}{\text { Bolting }}}{\frac{8}{6}}$ $\begin{array}{llllllllll}10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -100 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ 000 0 $\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}$
โ. 00 mm - 10 m - n n

1000 - に! ! !
 $\frac{\frac{05 / 13}{\text { RZM }}}{\text { Score }}$
 in n n n Plan

TEST B1198.

Variety	Description	(cont.)			$\frac{05 / 13}{\text { RZM }}$	$\frac{07 / 14}{\mathrm{RZM}}$	RZM	$\frac{13 \text { May }}{\text { Bolting }}$
		Stand Count	14 July 1998					
			Plants at Dead Harvest Plants					
R778H18-21		No.	No.	\%	Score	Score	Mean	$\frac{8}{8}$
	6818-21aa x R678	27	25					
R778H18-23	6818-23aa x R678	28	26	16.0	3.0	2.0	2.5	0.0
R778H18-24	6818-24aa x R678	30	36	13.9	4.0	2.0	3.0	0.0
R778H18B-1	6818-24aa \times R678	26	30	10.5	3.5	1.5	2.5	0.0
		26	21	13.9	1.5	1.5	1.5	2.5
R778H18B-2	6818B-2aa x R678	28	27	14.3				
R778H18B-12	6818B-12aa \times R678	29	28	14.3	2.5	2.0	2.3	0.0
R778H18B-13	6818B-15aa x R678	33	27	17.6	3.5	2.0	2.8	0.0
R778H18B-15		28	27	17.6	3.5	2.0	2.8	0.0
		28	27	28.0	3.5	2.0	2.8	0.0
R778H18B-21	6818B-21aa \times R678	29	30	5.4				
7818 (Sp) m	RZM 6818maa $\times 848$ (C)	27	26	5.4 15.7	1.5 3.5	2. 5	1.0	0.0
7818T-0	RZM-ER 5818 (C890-8,R22)	28	24	21.6	3.5	2.0	2.8	0.0
	T-0 6818-\# (C)	24	23	21.6 31.2	3.0	1.5	2.3	8.3
		24	23	31.2	3.0	2.5	2.8	0.0
7818-4	Inc. $6818 \mathrm{~B}-4 \mathrm{~mm}$	23	23					
7818-14	T-0 6818B-14mm	27	25	70.4	4.5	4.0	4.3	0.0
7818-23	Inc. $6818 \mathrm{~B}-22 \mathrm{~mm}$	27	24	41.1	4.5	3.5	4.0	0.0
	Inc. $6818 \mathrm{~B}-23 \mathrm{~mm}$	21	20	36.8	5.0	3.5	4.3	0.0
		21	20	55.0	5.0	3.5	4.3	0.0
7812M	RZM 6812M,m(C890-2/3, WB41, 42)	28	25	50.0	4.5			
7814M	RZM 6814M,m(C890-4, PI07)	25	24	23.2	4. 5	3.5	4.0	0.0
7816 M	RZM 6815M,m(C890-5,R04)	27	26	21.6	3.0	2.0	4.0	0.0
	RZM 6816M,m(C890-6,R05)	27	26	35.2	3.0 3.5	2.0 3.0	2.5 3.3	0.0
				35.2	3.5	3.0	3.3	0.0
$\begin{aligned} & 7817 \% \\ & 7819 \mathrm{M} \\ & 7820 \mathrm{M} \\ & 7821 \end{aligned}$	RZM-ER 5817 (C890-7, SES) RZM 6819M,m(C890-9, WB51) RZM 6820M, m (C890-10, WB169) RZM 6812M,m(C890-11, WB258)	23	23	27.1	4.0			
		25	25	60.1	4.0	2.0	3.0	0.0
		27	23	24.0	4.5	3.5	4.0	0.0
		24	20	24.0 44.8	3.0 5.0	2.5	2.8	0.0
		24	20	44.8	5.0	3.5	4.3	0.0
Mean LSD (.05) C.V. (\%) F value		26.8	25.0	25.4				
		5.2	6.9	28.3	3.6 1.8	2.3 1.1	3.0 1.1	0.3 3.6
		9.8	13.7	55.4	24.6	23.0	18.1	3.6
		1.6NS	1.2NS	1.8*	24.6 ${ }^{\text {1. }}$ *	$3.4 \text { ** }$	18.6 $3.2 *$	689.3

180 entries x 3 replications 2-row plots, 12 ft . long

Planted:
Not harvested for yield

Variety	Description	Stand Count	CT	CT
		No.	08/98	09/98
Hybrids				
US H11	F82-546H3 x C36, 111102	27	2.0	3.0
WS-PM9	HM-WS-PM9, 4-18-95	29	2.3	3.0
B4776R	4776R.7653, 3-27-98	29	3.7	4.0
B4035R	Betaseed, 7-10-97	31	3.3	4.0
SS-NB7R	Spreckels 173404, 3-3-98	26	3.3	3.3
Rizor	HH108, 9-3-97	28	3.7	4.0
Monohikari	Seedex, 2-18-97	30	4.0	5.7
7932CT	Inc. 6260...6263 (A, aa) CTR	26	2.7	3.3
R778H8	F82-546H3 \times R678	25	2.3	3.0
R778H50	C790-15CMS \times R678	27	3.0	3.7
R778H7	6911-4-7HO \times R678	21	3.0	3.7
R778H17M	6817aa (C890-7) \times R678	27	2.7	3.0
R778H18	6818aa (C890-8) x R678	25	2.7	3.3
R778H28M	6828aa x R678	26	2.7	3.3
R778H33	6833aa x R678	21	3.0	3.7
R778H33\%	6833\%aa x R678	22	3.7	4.0
R778H34	6834\%aa x R678	24	2.7	3.3
R778H38M	6837aa x R678	23	3.0	3.7
R778437	4807HO (C306/2CMS) \times R678	25	2.7	3.7
R778H69	6869aa x R678	26	3.0	3.3
R778H87	5890aa (C890-1Rz) \times R678	21	3.0	3.3
R778H31-4	6831-4aa (C831-4) x R678	21	3.0	3.7
US H11	111102	27	2.7	3.3
WS-PM9	HM-WS-PM9, 4-18-95	26	2.7	3.3
R746H8	F82-546H3 x RZM R646,R653	23	2.7	3.7
R746H50	C790-15CMS x RZM R646,R653	22	3.0	3.3
Y774 H 50	C790-15CMS \times Y74 (C)	26	3.7	3.7
Y769H8	F82-546H3 \times Y669	25	3.3	3.7
Y769H7	6911-4-7но х Y669	22	3.3	4.0
Y769H39	91-762-17CMS \times Y669	23	3.0	3.3
Y769H37	4807HO (C306/2CMS) \times Y669	22	3.0	3.3
Y769H50	C790-15CMS \times Y669	23	2.7	3.3
צ769H69	6869aa x Y669	24	3.0	3.7
R776-89-5H8	F82-546H3 \times R576-89-5	26	2.7	3.3
R776-89-5H7	6911-4-7HO \times R576-89-5	24	3.3	3.7
R776-89-5H27	6831-4 НО \times R576-89-5	21	4.0	4.0

(cont.)

Variety	Description	Stand Count	CT	CT
		No.	08/98	09/9
Hybrids (cont.)				
R776-89-5H37	4807HO (C306/2CMS) \times R576-89-5	24	3.3	3.7
R776-89-5H39	91-762-17CMS \times R576-89-5	24	3.0	3.3
R776-89-5H50	C790-15CMS x R576-89-5	25	3.3	3.7
R776-89-5H66	4867-1H50 \times R576-89-5	21	3.0	3.3
R776-89-5H69	6869aa x R576-89-5	26	3.3	3.7
7931H37	4807HO (C306/2CMS) $\times 931$ (C)	24	3.3	3.3
7931H50	C790-15CMS $\times 931$ (C)	24	3.0	3.0
7931H69	$6869 a \mathrm{a} 931$ (C)	25	3.0	3.3
7924H50	C790-15CMS $\times 924$ (C)	25	3.3	3.7
7926H50	C790-15CMS $\times 926$ (C)	18	3.0	3.0
2731H7	6911-4-7HO $\times 231$ (C)	23	2.3	3.3
Z731H41	6831-4HO (C831-4CMS) $\times 231$ (C)	21	2.7	3.3
2731H50	C790-15CMS $\times 231$ (C)	22	2.7	3.3
CR711H50	C790-15CMS \times CR11 (C) (CR09/10)	24	3.0	3.3
R709-1H50	C790-15CMS x CR-RZM R509A-1	26	2.7	3.3
R709-9H50	C790-15CMS \times CR-RZM R509A-9	25	2.7	3.3
R710H50	C790-15CMS \times CR-RZM R509,R510	26	2.7	3.0
R710-10H50	C790-15CMS \times CR-RZM R510A-10	24	2.7	3.3
R710-14H50	C790-15CMS \times CR-RZM R510A-14	27	3.0	4.0
US H11	111102	27	2.7	3.7
WS-PM9	HM-WS-PM9, 4-18-95	27	2.3	3.0
Monohikari	Seedex, 2-18-97	27	4.3	5.3
Multigerm, O.P. Lines				
97SP22-0	Inc. SP7622-0	27	4.0	5.3
$97-$ US $22 / 3$	Inc. Y009 (US22/3)	26	2.7	3.3
97-US75	Inc. 268 (US75)	26	2.7	3.7
97-C37	C37, 86443	27	3.3	3.7
U86-37	Inc. U86-37 (C37)	17	3.7	3.7
98-83-161	PX of CTR,MM,O.P.	18	3.7	4.0
98-83-174	PX of CTR,MM,O.P.	9	2.7	3.0
98-83-181	PX of CTR,MM,O.P.	2	2.0	2.3
98-85-243	PX of CTR,MM,O.P.	0	1.3	1.3
98-85-278	PX of CTR,MM, O.P.	17	4.0	4.0
90-СT01	MM,O.P.,CTR	21		3.3
90-Ст02	MM, O.P., CTR	19	2.3	3.3
R639	RZM R539 (C39R)	23	3.3	3.7
R647	RZM R547 (C47R)	21	3.7	4.0

(cont.)

Variety	Description	Stand Count	CT	CT
		No.	08/98	09/98
Multigerm, O.P. Lines (cont.)				
U86-46/2	C46/2, 86342	18	3.3	3.7
R778(Iso)	RZM-ER R578 (C78)	21	2.7	3.3
R778\%	RZM-ER-\% R578 (C78)	23	2.7	3.3
R780	RZM-ER R580 (C80NB)	24	2.7	3.7
R780/2	RZM-ER R580-\# (C80)	27	3.0	4.0
R780-45	RZM-ER R580-45 (C80-45)	24	3.3	3.3
R781	RZM-ER R581	25	3.0	4.3
R781-43	RZM-ER R581-43	24	3.3	4.0
R776	RZM-ER R576	25	3.3	3.3
R776-89-5	Inc. R576-89-5 (C76-89-5)	23	4.0	4.0
R776-89-5NB	Inc. R576-89-5NB	19	4.0	4.0
97-C37	Inc. U86-37 (C37)	28	2.7	3.0
R779	RZM R679 (C79-1, Rz)	23	2.7	3.0
R724	RZM R824 (C79-2, WB41)	24	3.0	3.3
R725	RZM R425 (C79-3, WB42)	25	3.3	3.3
R735	RZM R635 (C79-7, SES)	26	3.3	4.0
R736	RZM R636 (C79-8, R22)	24	2.7	3.3
R746	RZM R646	25	2.3	3.0
R746 (Sp)	Inc. R646,R653	22	2.7	3.0
R753	RZM R653	24	2.3	3.0
R753 (Sp)	Inc. R653,R646	25	3.0	3.3
R754	C37 x RZM R646,R653	23	3.0	3.0
R740	RZM-ER R540\%,R540-1,R551	27	2.7	3.0
R770	RZM-ER R570	25	3.0	3.7
Y765	RZM-ER Y565	24	3.0	4.0
Y766	RZM-ER Y566	25	3.3	3.3
Y767	RZM-ER Y567 (C67)	24	3.3	4.0
צ771	RZM Y671	25	3.3	4.0
Y772	RZM Y672 (C72)	25	3.3	3.7
Y773 (Iso)	RZM Y673R	25	3.0	3.3
Y775	Y-Rrr(C) X Y74 (C)	18	3.3	4.3
F86-31/6	C31/6, 86263	12	3.7	4.3
Y768	RZM-ER Y568	25	3.3	3.3
Y769 (Iso)	RZM-ER Y569 (C69)	24	3.7	3.7
Y769(Sp)	Inc. Y669	21	3.0	3.7
97-C37	Inc. U86-37 (C37)	25	2.7	3.0
R726	RZM-ER R526 (C26)	24	3.0	3.7
R727A	C37 x RZM Bvm	24	3.0	3.0
R727B	Y569rr x RZM Bum	22	3.0	3.7
US H11	111102	21	2.3	3.0

Variety	Description	Stand Count	CT	CT
		No.	08/98	09/98
Multigerm, $S^{\text {f }}$, Aa Populations \& Lines				
769H31	6931aa x Y669	22	2.7	3.3
2731H11	5911-mmaa x z31(C)	20	3.3	4.0
7926H13	C913-70aa $\times 926$ (C)	23	3.7	4.0
R776-89-5H13	C913-70aa \times R576-89-5	26	4.0	4.0
R776-89-5H31	6931aa x R576-89-5	25	3.3	3.7
7747	Inc. 5747 (A, aa)	23	2.3	3.3
7931	6931aa x 931 (C)	23	2.7	3.3
7926	6931aa x 926 (C)	25	3.7	3.7
6924	RZM 5924	23	3.3	4.0
6929	RZM R581H11,...	26	3.7	4.3
6930	RZM R578H11,...	25	3.0	3.7
7920NB	NB-RZM 5920	25	3.7	4.0
7923	RZM-ER 5922,5923	27	4.3	4.3
7924	6924,6929,6930aa x 924(C)	23	4.0	4.0
7927	RZM-ER $5921 \mathrm{H18}$	24	4.0	4.3
P601	PMR P401	26	3.7	3.7
P603	PMR P403 (~CPO1)	18	3.0	3.7
P604	PMR P404 (~CP02)	26	3.0	3.3
CR711	RZM R609,R610aa \times CR11 (C), (CR09,10)	19	3.3	3.7
CR712	$6931 \mathrm{aa} \times$ CR11 (C)	21	3.3	3.7
CR713	6260-6263 (CTR) aa \times CR11 (C)	21	2.7	3.7
7932CT	Inc. $6260, \ldots, 6263$ ($\mathrm{A}, \mathrm{aa})(\mathrm{CTR})$	19	3.0	3.3
7201,...	6260...6263aa x CTR	21	2.7	3.0
7202 , ...CMS	CTR-CMS x 6260...6263	25	2.3	3.0
7933	Inc. 6264-\# (RAR)	27	3.3	3.7
7222, ...CMS	CMS-RAR x 6931	25	2.7	3.7
2725	Z625-\# (C) aa x z31 (C), (CZ25)	25	3.0	3.7
Z730	Z630-\# (C) aa $\times \mathrm{z31}$ (C), (CZ30)	21	3.0	3.7
2731	6931aa \times z31 (C)	21	3.3	3.7
6913-70 (Sp)	C913-70aa x A (C913-70)	26	4.0	4.7
6918-12	RZM 4918-12	15	4.3	4.3
7911-4-10	RZM 6911-4-10	23	3.7	4.0
7918-21	RZM 6918-21	27	3.3	3.7
7747	Inc. 5747 (A, aa)	26	2.3	3.0
R709-1	CR-RZM R509A-1	24	3.3	3.7
R710	CR-RZM R509,R510 ($\mathrm{C}_{1} \mathrm{~S}_{1}$)	25	3.0	3.0
N724	Inc. N623,N624 (SBCNR)	25	3.0	3.0
N730	Inc. N629,N630 (SBCNR)	24	3.3	3.3

CURLY TOP EVALUATION, SALINAS ENTRIES, KIMBERLY, ID., 1998
(cont.)

Variety	Description	Stand Count	CT	CT
		No.	08/98	09/98
Monogerm, $\mathrm{S}^{\text {f }}$, Aa Populations \& Lines				
N766M	Inc. N665,N666, (SBCNR)	26	3.3	3.3
6546	Inc. F82-546 (C546)	23	3.0	3.3
6562	Inc. F82-562 (C562)	24	3.0	3.0
6718	Inc. U83-718 (C718)	23	3.0	3.3
6762-17	Inc. 0762-17 (C762-17)	22	2.7	3.0
6796-43	Inc. 0796-43 (C796-43)	25	3.3	3.7
7835	6833, ...aa x 835 (C), (CTR, T-O,Rz)	24	2.7	3.3
7835H50	C790-15CMS $\times 835$ (C)	24	2.7	3.0
7835H87	6890 aa $\times 835$ (C)	26	2.7	3.3
7834NB	NB-RZM 5834,5893 (A, aa)	25	3.0	3.3
7838	6828,...aa x 838 (C), (CTR, T-O,VYR,Rz)	22	2.7	3.0
7838450	C790-15CMS $\times 838$ (C)	24	2.7	3.3
7864-14M	Inc. 5864-14, C864-14	27	3.0	3.7
7867-1M	Inc. T-0 6867-1 (CTR), C867-1	19	2.7	3.0
6911-4-7	RZM 5911-4-7, C911-4-7	19	3.3	3.3
6831-4	RZM-T-0 4831-4mm, C831-4	18	3.7	4.3
7869-6	T-O 6869-6	26	3.7	4.0
7869M	RZM-ER 5869	28	3.0	3.7
7869NB	NB-RZM 5869	25	3.0	3.7
7895M	NB-RZM 5895	24	3.0	4.0
7890	RZM-ER 5890 (C890-1,Rz)	26	3.3	3.7
7848	0790aa $\times 848$ (C)	24	3.0	3.7
7810 NBM	NB-RZM 5810 (C890-\#)	25	2.7	3.0
7812M	RZM 6812M (C890-2/3, WB41, 42)	29	2.7	3.3
7815M	RZM 6815M (C890-5,R04)	26	2.7	3.0
7817\%	RZM-ER 5817 (C890-7,SES)	27	3.0	3.7
7818\% ${ }^{\text {M }}$	RZM-ER 5818 (C890-8,R22)	29	3.7	4.0
7819 M	RZM 6819M (C890-9,WB151)	23	3.7	4.3
7820M	RZM 6820M (C890-10,WB169)	26	3.3	3.7
7821M	RZM 6821M (C890-11,WB258)	29	3.7	4.0

Variety	Description	Powdery		Mildew		Harvest Count	Stand Count	Erwinia Rating	
		08/07	08/20	09/11	Mean	Mean	Mean	DI	8 R
Block 1									
Multigerm,	-pollinated								
E740	Inc. E840 (C40), susc. ck.	4.7	7.3	7.0	6.7	33	31	46.4	45.9
97-SP22-O	Inc. SP76-22-0	3.3	5.7	5.7	5.2	35	33	8.4	83.7
268	Inc. 768 (US75)	4.3	6.7	7.0	6.1	30	30	13.1	81.3
97-US75	Inc. 268 (US75)	3.7	6.3	7.0	5.8	30	29	15.3	65.9
97-US22/3	Inc. Y009 (US22/3)	4.0	6.3	7.0	5.8	28	32	14.5	79.6
US H11	L111102, 9-24-96	4.0	6.7	6.3	5.7	30	28	2.4	89.2
U86-37	C37, L86443	4.7	7.0	6.3	6.2	27	25	1.2	96.9
97-C37	Inc. U86-37	4.3	6.3	6.0	5.6	33	31	3.0	93.3
U86-46/2	Inc. C46/2, L86342	2.7	4.3	5.3	4.3	23	24	2.5	92.9
R678 (Iso)	NB-RZM R478NB (C78)	3.0	5.0	5.0	4.6	31	31	3.4	94.4
R778 (Sp)	Inc. R678(Iso) (C78)	3.0	5.3	5.3	5.0	27	30	5.0	91.6
R778(Iso)	RZM-ER R576 (Sp) , ... (C78)	3.0	5.3	5.3	4.6	31	30	2.0	96.6
R778\%	RZM-ER-8S R578,R578/2,R578\%	2.7	5.0	5.0	4.4	33	33	1.0	98.1
R639	RZM R539 (C39R)	2.0	4.3	4.7	3.7	31	30	3.3	95.5
R647	RZM-R547 (C47R)	3.3	5.3	4.7	4.8	31	30	0.6	96.8
R770	RZM-ER R570	3.0	6.0	5.3	5.1	29	29	0.9	98.8
Block 2									
R778\%	RZM-ER-8S R578,R578/2,R578\%	2.3	4.7	5.3	4.3	33	33	6.0	88.5
R639	RZM R539 (C39R)	2.0	4.3	4.7	3.8	31	31	1.2	96.8
R647	RZM-R547 (C47R)	2.0	5.0	5.3	4.4	27	27	0.1	98.7
R770	RZM-ER R570	2.3	5.3	5.3	4.5	26	26	0.1	98.6

TEST 2498．ERWINIA／POWDERY MILDEW EVALUATION OF LINES \＆POPULATIONS，SALINAS，CA．， 1998

rmor
0000 － 0 n
m「m「 คMトロ m․n．
 $\stackrel{+}{\circ}$

「「mがm

MMmm \quad Mo：
 $\dot{m} \dot{\mathrm{~m}} \dot{\mathrm{~N}}$ ल்ற் － －

Variety	Description	Powdery Mildew				Harvest Count	Stand Count	Erw	
		08/07	08/20	09/11	Mean	Mean	Mean	DI	\%R
Block 4									
Y767(Sp)	RZM Y667, ...	2.7	4.0	5.0	4.2	29	30	1.5	96.7
Y771 (Sp)	RZM Y671,...	2.7	5.3	5.7	4.9	28	28	5.0	91.4
Y772 (Sp)	RZM Y672,...	3.0	5.0	5.7	4.8	27	28	3.1	96.1
Y773 (Sp)	RZM Y673,...	3.3	5.7	5.7	5.1	28	27	1.8	95.8
Y775 (Sp)	Y -Rar (C) $\times \mathrm{Y} 74$ (C)	4.0	5.7	5.3	5.0	27	28	2.5	96.3
US H11	L111102, 9-24-96	4.3	6.7	7.0	6.2	29	29	1.3	97.5
97-C37	Inc. U86-37 (C37)	4.7	7.0	7.0	6.2	35	33	1.9	93.9
R779	RZM R679 (C79-1,Rz)	3.7	6.0	5.7	5.3	27	27	0.3	98.7
R736	RZM R636 (C79-8,R22)	5.0	6.3	5.7	5.8	33	35	3.8	94.3
R746	RZM R646 (C79-8,R22)	5.0	7.0	6.3	6.3	30	29	5.8	90.5
R753	RZM R653 (C79-8,R22)	4.0	5.3	5.7	5.3	29	31	0.0	100.0
R740	RZM-ER R540\%,R540-1,R551	4.3	6.0	6.7	5.8	32	30	0.4	96.9
R735	RZM R635 (C79-7, SES)	5.0	6.7	6.0	6.1	33	33	4.9	92.0
R724	RZM R824 (C79-2, WB41)	5.0	7.0	6.0	6.1	34	33	5.8	92.1
R725	RZM R425, R525 (C79-3, WB42)	4.7	6.3	6.3	5.9	27	27	13.2	81.0
E740	Inc. E840 (C40)	5.7	7.3	7.3	6.8	22	23	51.1	40.5
Block 5									
E740	Inc. E840 (C40)	5.0	7.3	7.0	6.8	33	45	46.1	39.7
R746 (Sp)	RZM R646,R653	4.7	6.3	6.7	6.0	29	28	9.6	79.0
R753 (Sp)	Inc. R653,R646	4.0	6.0	6.0	5.5	25	26	2.0	92.1
R754	U86-37 x RZM R646,R653	3.7	6.3	6.7	5.7	27	26	6.2	84.0
P603	PMR P403 (WB97), (~CP01)	2.3	3.7	4.7	3.7	29	31	1.2	96.5
P604	PMR P404 (WB242), (~CP02)	2.7	4.7	5.0	4.4	35	31	0.7	97.3
P601	PMR P401 (WB97/242)	3.7	5.3	5.3	4.9	31	27	0.9	97.6
97-C37	Inc. U86-37 (C37)	3.7	6.7	7.0	5.9	33	28	0.3	98.6

TEST 2498

(cont.)									
Variety	Description		Powdery	Mildew		Harvest Count	Stand Count	Erwinia Rating	
		08/07	08/20	09/11	Mean	Mean	Mean	DI	\% R
Block 7									
N766M	Inc. N665,N666(g)	3.0	4.7	5.3	4.6	28			
P602NR	NR P202 (WB97, 242)	3.0	5.3	5.7	4.8	38	25	0.6	90.8
E740	Inc. E840 (C40)	5.0	7.7	7.0	4.8 6.8	34	31	0.4	96.8
US H11	L111102, 9-24-96	4.3	6.3	6.7	6.8 5.8	24	24	59.0	34.3
		4.3	6.3	6.7	5.8	25	22	0.5	96.7
2725	Z625-\# (C) aa \times z31 (C) (CZ25)	3.0	5.0	4.3	4.4	26			
Z730	Z630-\# (C) an x z31 (C) (CZ25)	3.7	5.7	5.7	4.4 5.2	27	28	4.0	90.6
2731	6931aa x $\mathrm{z31}$ (C)	3.3	5.0	4.7	4.2	27	26	8.0	83.9
Z731H11m	5911-4maa x 231 (C)	3.0	5.3	5.3	4.4	24	26	5.2	89.7
				5.3	4.4	24	23	2.1	94.1
Z731H11M	5911-4aa x z31 (C)	2.7	4.0	4.7	4.1				
7920 NB	NB-RZM 5920	3.7	5.0	4.3	4.1	26	27	2.2	95.0
6921 (Sp)	RZM-\%S R21 (C)	4.0	6.0	5.7	5.3	30	29	13.8	81.8
6926	RZM 5287, P	2.7	4.7	5.0	5. 4	29 30	32	2.1	94.5
		2.7	4.7	5.0	4.4	30	28	3.0	90.4
6927	RZM 5921H18	3.3	5.7	5.3					
7927 (Sp)	6926,6927-\# (C) aa $\times 926$ (C)	4.0	5.3	5.3	4.8	29	30	3.7	87.9
7927	RZM-ER 5921H18	3.0	5.7	5.0	4.9	32	31	6.4	91.2
7923	RZM-ER 5922,5923	3.7	6.3	6.0	4.9 5.5	27 27	26	2.4	90.3
		3.7	6.3	6.0	5.5	27	26	0.1	98.3
Block 8									
7926 (Sp)	6931aa x 926 (C)	2.0	3.7	4.0					
7926H13	6913-70aa x 926(C)	2.7	5.0	6.0	4.6	27	25	3.9	93.8
7926H69	6869aa x 926 (C)	3.0	5.0	5.0	4.9	27	26	1.4	94.8
Y769H31	6931aa x Y669	2.3	3.7	5.3 4.0	4.8	27	27	8.7	82.5
		2.3	3.7	4.0	3.6	23	23	2.7	92.9
Y769H69	6869aa x Y669	2.7	4.7	4.3	4.1				
R776-89-5H11	5911-4maa x R576-89-5	3.3	5.0	5.7	4.1	29	28	16.5	70.6
R776-89-5H13	6913-70aa x R576-89-5	3.7	5.3	5.7	4.7	25	25	0.9	95.6
R776-89-5H31	6931aa x R576-89-5	3.3	5.7	5.0	5.1	29	28	0.4	97.6
	6931aa x R576-89-5	3.3	5.7	5.0	4.6	26	25	0.7	94.7

	Powdery Mildew		Harvest Count	Stand Count	Erwinia Rating		
$\mathbf{0 8 / 0 7}$	$\underline{08 / 20}$	$\underline{09 / 11}$	$\underline{\text { Mean }}$	$\underline{\text { Mean }}$	$\underline{\text { Mean }}$	$\underline{\text { DI }}$	$\underline{8} \mathrm{R}$

$$
27 \quad 8.6 \quad 85.6
$$

,
\square

	$\begin{array}{cccc} \wedge & 0 & 0 \\ 1 & 0 & 0 & 0 \\ \infty & \infty & \infty & 0 \end{array}$	$\begin{array}{lll} m & m \\ \dot{\infty} \dot{\infty} & \dot{\alpha} \\ \dot{\infty} & \dot{\infty} \end{array}$	
$\begin{aligned} & \mathrm{r} 0 \mathrm{O} \\ & 000 \\ & 0 \\ & \text { r } \end{aligned}$	60～o $\infty \dot{\infty} \dot{\circ}$	$\begin{array}{lll} \infty & \square \\ \infty & \infty \\ 0 \end{array}$	$\begin{array}{ll} \therefore & m \\ 0 \\ 0 & 0 \end{array}$
욨N N	$\stackrel{\infty}{\sim} \stackrel{0}{\sim} \stackrel{9}{\sim} \stackrel{\Omega}{N}$	HㅇㅆㅆN N	$\text { N 운 } \stackrel{\sim}{\sim}$
Her	$\stackrel{\infty}{\sim} \circ_{\mathrm{m}}^{\mathrm{N}} \mathrm{~N}$	Hion m	$\underset{m}{M} \sim$
$\begin{array}{lll} \infty & 0 \\ \infty & \infty \\ \infty \end{array}$			$\therefore \text { 둡 }$
－O～に 	$0 \text { ㅇ }$	$\begin{aligned} & m \times m o \\ & i n \\ & i \end{aligned}$	m moo －ートゥ
$\begin{aligned} & m m m m \\ & n \\ & n \\ & n \end{aligned}$	~ro	$\stackrel{\wedge}{\sim}$	
$\begin{aligned} & m \times \underset{m}{m} \dot{m} \\ & \dot{m} \end{aligned}$	$\begin{array}{ll} \circ & m \\ m & m \\ m & m \end{array}$	$\begin{array}{lll} 0 & 0 \\ \dot{m} \neq \dot{m} \end{array}$	$\begin{array}{lll} \circ & 0 \\ <i n & 0 \end{array}$

 $\begin{array}{ll}0 M r O & 0000 \\ \text { Mलिल } & 0 \text { Niल }\end{array}$

 6869aa \times R576－89－5
RZM 5913－70（C913－70）
RZM 5913－70aa \times A $(C 913-70)$
RZM 6911－4－10
InC．E840（C40）
RZM 4918－12
RZM 6918－21
NB－ER－RZM 3911－4（C911－4）
（•7レ0ロ） 8 अจOT\＆
Description

Variety	Description			
Block 8 （cont．）				
R776－89－5H69	6869aa \times R576－89－5			
6913－70（Iso）	RZM 5913－70（C913－70）			
6913－70（Sp）	RZM 5913－70aa x A（C913－70）			
7911－4－10	RZM 6911－4－10			
E740	Inc．E840（C40）			
6918－12	RZM 4918－12			
7918－21	RZM 6918－21			
5911－4（Iso）	NB－ER－RZM 3911－4（C911－4）		$\frac{\text { Block } 9}{\mathrm{~mm}, \mathrm{~S}^{T}, \mathrm{Aa}}$ populations and lines	
:---	:---			
7835 m	$6833, \ldots \mathrm{aa} \times 835(\mathrm{C})$			
7835 H 69	$6869 \mathrm{aa} \times 835(\mathrm{C})$			
7835 H 87	$6890 \mathrm{aa} \times 835(\mathrm{C})$			
7838 m	$6828, \ldots$ aa $\times 838(\mathrm{C})$	7838H10 7848		

7848 H 87 7810 NBm
7812 M
7815 M
7816 M
 7818－2m
TEST 2498. ERWINIA/POWDERY MILDEW EVALUATION OF LINES \& POPULATIONS, SALINAS, CA., 1998

(cont.)									
Variety	Description	Powdery		Mildew		Harvest Count Mean	Stand Count	Erwinia Rating	
		08/07	08/20	09/11	Mean			DI	\%R
Block 10									
7818TO	T-O 6818B-\# (C)	3.7	6.0	5.7	5.3	28	27	16.9	70.0
7818\%M	RZM-ER 5818, (C890-8)	3.3	5.3	5.3	5.0	29	25	8.4	84.3
7819 M	RZM 6819M,m, (C890-9)	3.3	5.3	5.7	5.0	23	24	9.2	77.0
7820 M	RZM 6820M, m, (C890-10)	4.3	6.3	5.7	5.8	27	26	9.0	79.2
7821 M	RZM 6821M,m, (C890-11)	4.0	6.0	5.7	5.3	27	27	11.0	79.8
US H11	L111102, 9-24-96	4.7	6.7	6.7	6.0	29	22	3.3	89.4
C40		5.3	8.0	7.0	6.9	27	24	61.3	36.1
7869-6	T-O 6869-6	3.3	5.0	5.7	4.6	30	28	0.0	100.0
7867-1m	T-O 6867-1, C867-1	3.7	5.3	5.7	4.7	31	31	13.3	79.1
7864-14M	Inc. 5864-14, C864-14	4.3	6.1	6.0	5.8	2	2	2.9	88.9
6831-4	RZM, T-0 4831-4mm, C831-4	3.3	6.0	6.0	5.2	21	18	19.9	65.9
6869 (Sp)	$5869 \mathrm{mmaa} \times \mathrm{A}$	3.0	4.7	5.7	4.7	30	30	7.1	83.6
7869 M	RZM-ER 5869	3.7	5.0	4.7	4.6	33	31	6.3	88.4
7869 NBm	NB-RZM 5869	3.3	5.3	5.0	4.7	36	33	3.0	90.6
7834 NBm	NB-RZM 5834,5893	4.3	6.7	5.7	5.7	31	31	6.0	84.0
7895M	NB-RZM 5895	4.0	6.0	6.0	5.5	30	29	1.0	95.3
Mean		3.4	5.5	5.6	5.0	28.5	27.9	7.2	87.9
LSD (.05)		1.1	1.0	1.0	0.6	5.8	5.7	8.3	12.5
C.V. (\%)		19.1	11.0	11.7	7.7	12.8	12.6	71.8	8.9
F value		5.0**	7.1**	4.6**	13.0**	3.8**	5.0**	19.0**	10.7**

Planted：March 30， 1998 Not harvested for yield | Harvest | Stand | Erwinia |
| :---: | :--- | :--- |
| Count | Count | Rating |

Count Count Rating

～～ $\begin{array}{llll}6 & 9 \\ \infty & \text { n } \\ \infty & \infty \\ \infty & \infty & 0\end{array}$ ∞
∞
∞
∞ $\begin{array}{lll}\text { N N } \\ \infty & \dot{\sim} \\ \infty & \dot{0}\end{array}$
 Mean \quad DI

 ※～～
 ∞
\sim
\sim Mean $\stackrel{\sim}{\sim} \stackrel{\infty}{N} \stackrel{ }{\top}$ 데NN 우N
 ㄱำ

90
\circ

∇

6

$m m m$
0
\dot{n}
m R o m
mmRo m
j $\therefore \infty$ mor「「「．
 0 ㅇ $\stackrel{\wedge}{\circ}$ $\stackrel{\sim}{\circ}$
$\stackrel{\circ}{\circ}$

5.0
6.0
4.0

웅․ or
$\dot{m} \dot{m}$
Noo
mo 100 entries $\times 3$ replications，sequential
100 entries $\times 3$ replications，sequential
1 －row plots， 17 ft ．long Description
1－s plots， 17 ft．long

L113102，3－18－97
Inc．E840（C40）
U83－718HO \times C40
F82－546H3 x C40

Spreckels，9－3－97
Holly HH103，L1032406，3－18－97
Spreckels，173404，3－3－98
Betaseed，4776．7033，9－1－97
Betaseed，7－10－97
Betaseed，PMR－Rz，8－18－97
Variety
Block 1 $\frac{\text { Block } 1}{\text { US H11 }}$ E840H72 E840H8 Rizor Rival SS－NB7R B4776R B4035R
5KJ0142 Block 2 Hilleshog，3．20－4．00，2－24－98 Betaseed，L6KJ0190，2－11－98 Spreck，522401，3－3－98（SS－IV2R） F92－790－15CMS x R678 F92－790－15CMS x Y669 F92－790－15CMS \times R576－89－5 F92－790－15CMS x RZM 646，R653 E92－790－15CMS x Y74（C）

Variety	Description	Powdery Mildew				Harvest Count	Stand Count	Erwinia Rating	
		08/07	08/20	09/11	Mean	Mean	Mean	DI	\%R
Block 5									
Y771H50	F92-790-15CMS \times RZM Y671	3.3	5.3	5.3	4.8	33	32	7.1	84.9
Y772H50	F92-790-15CMS x RZM Y672	2.7	5.0	5.0	4.7	36	32	7.9	88.9
Y773H50	F92-790-15CMS x RZM Y673R	3.3	5.7	5.7	5.2	31	31	1.7	94.2
R778H7	6911-4-7HO \times R678	3.0	5.0	5.3	4.4	27	26	6.0	83.7
Y769H7	F92-790-15CMS \times Y669	2.3	4.0	5.3	4.0	27	28	4.1	89.0
R776-89-5H7	F92-790-15CMS \times R576-89-5	2.7	4.3	4.7	4.1	29	27	2.2	94.5
E740	Inc. E840 (C40)	6.0	7.7	7.0	7.0	28	31	58.3	32.8
R778H37	4807HO (C306CMS) \times R678	3.3	4.0	4.3	4.2	30	31	6.4	85.2
צ769H37	F92-790-15CMS \times Y669	4.0	4.7	4.3	4.4	31	29	7.3	87.2
R776-89-5H37	F92-790-15CMS \times R576-89-5	3.7	5.3	4.7	4.7	29	28	4.1	90.1
Block 6									
R778H69	6869aa \times R678	3.3	5.3	5.0	4.8	31	29	4.4	90.2
Y769H69	6869aa x Y669	3.0	5.0	4.7	4.3	31	33	5.6	89.5
Y776-89-5H69	6869aa \times R576-89-5	3.3	5.7	4.7	4.9	28	28	2.2	95.3
R746H69	6869aa x RZM R646,R653	5.0	6.7	6.0	5.9	26	24	6.0	87.3
Y774H69	6869aa x Y74 (C)	4.0	6.0	6.0	5.3	29	29	6.0	88.4
7931H69	6869aa x 931 (C)	3.7	5.3	5.7	5.0	30	29	5.6	87.3
7924H69	6869aa x 924 (C)	3.0	5.3	5.3	4.9	29	29	5.3	92.0
CR711H69	6869aa x CR11 (C)	4.0	5.3	6.0	5.1	28	29	6.5	88.0
2731H69	6869aa x z31 (C)	4.0	5.7	6.0	5.4	28	27	5.9	89.3
7926H69	6869aa x 926(C)	4.3	5.7	5.7	5.2	31	30	4.9	88.4

Variety	Description	Powdery Mildew				Harvest Count Mean	Stand Count Mean	Erwinia Rating	
		08/07	08/20	09/11	Mean			DI	\% ${ }^{\text {R }}$
Block 7									
R776-89-5H27m	6831-4HO \times R576-89-5	3.3	5.0	5.3	4.8	30	26	3.7	
R778H31-4M	6831-4aa \times R678	3.7	5.7	5.3	5.1	21	26	3.7	90.4
R776-89-5H13	6913-70aa \times R576-89-5	4.7	5.7	6.0	5.6	27	25	8.4	82.3
R776-89-5H31	6931aa \times R576-89-5	2.7	4.7	4.7	4.3	26	27	0.2 0.9	97.3 97.5
R776-89-5H11	5911-4maa \times R576-89-5	3.3	5.0	5.3	4.7	27	28	2.5	95.2
R776-89-5H11-1	6911-4-1aa \times R576-89-5	3.3	5.3	5.7	5.0	24	25	0.4	98.2
R776-89-5H11-15M	6911-4-15aa \times R576-89-5	3.3	4.3	5.0	4.4	30	29	0.6	97.8
R778H59M	6859-8HO \times R678	4.0	6.0	5.7	5.4	27	27	11.1	80.0
R778H64M	5864-14 HO \times R678	3.0	5.7	5.7	5.2	23	18	17.4	73.6
R778H93	6891-10НО \times R678	4.7	6.0	5.7	5.6	30	29	3.7	91.4
Block 8									
R680H31-3	5831-3aa x RZM R580	3.7	5.7	5.7	4.9	27	27		
US H11	L113102, 3-18-97	4.0	6.0	6.7	5.5	25	26	17.6 1.4	$\begin{aligned} & 74.2 \\ & 95.0 \end{aligned}$
E740	Inc. E840 (C)	5.0	7.7	7.3	6.9	18	20	77.5	
R678H33-5	5833-5aa x R578	3.0	5.0	5.0	4.6	27	26	4.1	93.4
R778H28M	6828aa \times R678	3.0	5.7	6.0	5.0	25	23	4.1 5.5	93.4 85.4
R778H33M	6833aa \times R678	3.7	5.7	6.0	5.3	24	24	5.1	87.6
R778H33\%M	68H33\%aa \times R678	3.7	6.0	6.0	5.4	29	29	6.8	
R778H34M	6834\% aa x R678	3.7	5.3	5.7	5.2	31	29	7.8	87.2 83.6
R778H36	6836aa \times R678	3.3	5.3	5.3	5.1	21	20	5.8	83.6 89.2
R778H38M	6837aa \times R678	4.0	5.7	6.0	5.4	28	28	7.3	89.2 87.6
Block 9									
R778H8	F82-546H3 \times R678	2.7	5.7	5.7	4.8	26	24	4.0	
R778H18	6818maa x R678	2.7	5.0	5.7	4.8	26	28	4.0	82.6
R778H18-1	6818-1aa \times R678	2.7	5.7	5.7	4.7	26	27	3.2	92.1
R778H18-2	6818-2aa \times R678	2.3	5.0	5.3	4.7	23	24	1.5	92.9 85.7

TEST 2598. ERWINIA/POWDERY MILDEW EVALUATION OF EXPERIMENTAL HYBRIDS, SALINAS, CA., 1998

R778H18-5	6818-5aa \times R678
R778H18-6	6818-6aa \times R678
R778H18-11	6818-11aa \times R678
R778H18-12	6818-12aa \times R678
R778H18-21	6818-21aa \times R678
R778H18B-1	6818B-1aa x R678
Block 10	
R778H18B-2	6818B-2aa \times R678
E740	Inc. E840 (C40)
US H11	L113102, 3-18-97
R778H17	$6817 \mathrm{maa} \times \mathrm{R678}$
R778H17-5	6817-5aa \times R678
R778H17-6	6817-6aa \times R678
R776-89-5H39	91-762-17CMS \times R576-89-5
Y769H39	91-762-17CMS x Y669
Z731H50	F92-790-15CMS \times z31 (C)
Z731H7	6911-4-7HO \times z31 (C)
Mean	
LSD (.05)	
C.V. (\%)	
F value	

BETASEED CERCOSPORA LEAF SPOT (CLS) NURSERY, (SALINAS ENTRIES), SHAKOPEE, MN, 1998

Variety	Description	Act ${ }^{1}$	8^{2}	Act ${ }^{1}$	$\%^{2}$	Act ${ }^{1}$	8^{2}	Act ${ }^{1}$	$\%^{2}$	Act ${ }^{1}$	$\%^{2}$
		Aug 06		Aug 14		Aug 21		Aug 27		Average	
$97 \mathrm{SP220}$	SP7622-0 (Resist. ck)	1.9	78	3.7	93	4.2	87	5.3	88	3.8	88
Y769	RZM-ER Y569 (C69) (Susc. ck)	2.7	109	4.2	106	5.0	104	6.0	101	4.5	104
5KJ0142	Combined RzPMR	3.2	129	4.8	119	6.5	135	9.0	152	5.8	136
R726	RZM-ER R526 (Bvm gp) (C26)	2.7	108	4.1	103	5.3	109	6.5	109	4.6	108
R727A	C37 x RZM Bvm (B vm gp)	2.7	111	4.1	103	4.8	99	6.0	101	4.4	103
R727B	C69 x RZM Bvm (Bvm gp)	2.8	113	4.2	105	4.6	96	5.5	93	4.3	100
CR711	RZM R609, R610aa \times CR11 (C)	2.2	89	3.7	91	4.1	86	5.5	93	3.9	90
CR711H50	C790-15CMS \times CR11 (C)	2.5	103	4.1	103	5.1	106	6.5	109	4.6	107
CR712	6931aa \times CR11 (C) (CR09/10)	2.3	92	4.0	100	4.6	96	5.5	93	4.1	96
CR713	6260-6263 (CTR) aa \times CR11 (C)	2.6	103	3.9	97	4.5	94	5.5	93	4.1	96
7932 CT	Inc. 6260-6263 (CTR) (Rz-CTR)	2.1	87	3.6	91	4.4	91	5.8	97	4.0	93
7933	Inc. 6264 (Rz-Root Aphid)	2.3	91	4.0	99	4.9	102	6.8	114	4.5	104
R709-1	CR-RZM R509A-1 (S_{1})	2.1	84	3.5	88	4.5	93	6.0	101	4.0	93
R709-1H50	C790-15CMS \times CR-RZM R509A-1	2.8	115	3.8	96	4.7	97	6.5	109	4.5	104
R709-9H50	C790-15CMS \times CR-RZM R509A-9	1.9	77	3.6	90	4.3	89	5.0	84	3.7	86
R710	CR-RZM R509,R510 ($\mathrm{S}_{1} \mathrm{C}$)	2.3	92	3.8	95	5.0	104	6.3	105	4.3	101
R710H50	C790-15CMS \times CR-RZM R509,R510 ($\mathrm{S}_{1} \mathrm{C}$)	2.4	96	4.0	100	4.8	100	5.8	97	4.2	98
R710-10H50	C790-15CMS \times CR-RZM R510A-10	2.8	111	4.0	99	5.8	121	6.8	114	4.8	112
R710-14H50	C790-15CMS \times CR-RZM R510A-14	2.1	85	3.8	96	4.3	90	5.8	97	4.0	93
Y769H50	C790-15CMS x Y669 (Susc. ck)	2.8	113	4.0	99	5.1	106	6.5	109	4.6	107
Mich. Res.	brid Check	2.1	86	3.8	96	3.8	78	4.8	80	3.6	84
Mod. Susc.	brid Check	3.0	122	4.4	109	5.9	123	7.5	126	5.2	121
Susc. Canad	n Hybrid Check	2.9	117	4.8	120	6.3	131	8.3	139	5.5	129
Resistant S	rce Check	1.9	75	3.0	75	3.3	68	3.3	55	2.9	66
LSD (.05)		0.44	17.8	0.40		0.48		0.79	13.3	0.37	8.5

 ㅇ.

Leaf Spot Evaluation

N~NNNMダ
2.50
2.83
2.83
2.67
2.67
2.67
4.00

0.70

Description

Inc. 6260-6263(A, aa) (CTR)
97A050
921024
831085 HO
(FC 504 CMS x FC 502/2) \times SP6322-0
East Lansing
East Lansing
SP351069-0
LSD (.05)
NOTE: Nursery grown and evaluated by Dr. L. Panella.

DAVIS-297. VIRUS YELLOWS (BEET CHLOROSIS VIRUS) EVALUATION OF COMMERCIAL \& EXPERIMENTAL HYBRIDS, DAVIS, CA., 1997

DAVIS-297. VIRUS YELLONS (BEET CHLOROSIS VIRUS) EVALUATION OF COMMERCIAL \& EXPERIMENTAL HYBRIDS, DAVIS, CA., 1997

12 entries x 8 replications, RCB
2 -row plots, 21 ft . long, 2.33 ft

test c397. EVALUATION OF Chicory at salinas, CA., MAY planting, 1997

16 entries $x 8$ replications, RCB 2 -row plots, 14 ft . long, 2.33 ft . wide						Planted: May 8, 1997			
		Acre Yield	Soluble Solids		$\begin{aligned} & \text { Est. } \\ & \text { inulin } \end{aligned}$	Roots /100^{\prime}	Roots/ Acre	Roots/ ha	Bolting
Variety	Description	Beets	Brix	SS					
		Tons	\%	Acre	No.	No.	No.	No.	\%
Desprez entries									
Bergues	9-17-96	30.90	23.33	14412	11530	215	40093	99030	0.0
Cassel	9-17-96	32.91	22.79	14985	11988	199	37259	92030	0.2
Orchies	9-17-96	30.12	23.63	14213	11371	200	37426	92442	0.0
Rubis	9-17-96	32.87	22.65	14901	11921	207	38676	95530	0.2
FD96/9	9-17-96	28.51	23.21	13253	10603	218	40760	100677	0.0
From Holly Sugar									
SCI9601	2-27-97	34.85	22.48	15664	12531	209	39093	96559	0.2
Hicor	2-27-97	34.24	23.30	15931	12744	202	37676	93059	0.2
Inula	2-27-97	33.31	22.26	14817	11853	206	38426	94912	0.3
Tilda	2-27-97	33.87	22.61	15320	12256	205	38343	94707	0.2
Candi	2-27-97	32.08	23.46	15067	12053	203	37843	93471	0.9
Eva	2-27-97	30.28	23.10	13998	11198	208	38759	95736	0.0
Dagerraad	2-27-97	29.43	24.90	14633	11706	206	38509	95118	0.0
Marlene	2-27-97	29.11	24.63	14325	11460	203	37843	93471	0.0
Katrien	2-27-97	27.85	24.36	13573	10859	215	40093	99030	0.0
Halle	2-27-97	30.77	23.29	14302	11442	212	39676	98001	0.4
Madona	9-5-96 (film)	35.90	23.14	16610	13288	202	37676	93059	0.0
Mean		31.69	23.32	14750.3	11800.2	206.8	38634.5	95427.1	0.2
LSD (.05)		2.37	1.03	1209.3	967.5	22.6	4223.1	10431.2	0.6
C.V. (\%)		7.56	4.47	8.3	8.3	11.0	11.0	11.0	334.8
E value		8.10**	4.20**	4.0**	4.0**	0.5 Ns	0.5 NS	- 0.5 N	S 1.4 NS

TEST C497. EVALUATION OF CHICORY AT SALINAS, CA., MAY PLANTING, 1997
Harvested: November 24, 1997 Roots/ Roots/ Roots/
$\begin{array}{lll}0 & n & 0 \\ 0 & 0 & 0 \\ 0\end{array}$
000%
00
000
000
000
0
云
0

$$
\dot{6}
$$

$$
c
$$

Acre	ha	Bolting
No.	No.	$\frac{8}{8}$

 100 0.0 100

93886
98004
96768
99239

38677
41011
38344
40511
38844
38177
39011
38844
38677
38677
41011 11.6
\qquad OZ NO
N 215 or
웅
N 39011
38677
41011
38344
40511
38844
38177
39011

38844
38677
38677
41011 39011
38677
41011
38344
40511
38844
38177
39011

38844
38677
38677
41011 39011
38677
41011
38344
40511
38844
38177
39011

38844
38677
38677
41011 39011
38677
41011
38344
40511
38844
38177
39011

38844
38677
38677
41011
 Z

No.

\qquad 39177 39011 41011 - - - -

10535	208
11995	207
12210	207
11094	220

16 entries $x 8$ replications, $R C B(E)$
(film)

Madona
W2S39727
W4S39332
W4S39334
W4S39339 W4S39339
พ4S39340
 W4S39345

 พ4S39393 स4S39394
 6
-1
0
0

$/ 3$ W5S10376 Mean LSD (.05) E value
TEST C198. CHICORY TRIAL(Block 4-North), SALINAS, CA., 1998

NOTES:
${ }^{1}$ Roots.
${ }^{2}$ Brix measured from brei obtained from Spreckels rasp (same as used for beet).
${ }^{3}$ Soluble solids, lbs per acre (wt x brix)
${ }^{4}$ Est.lbs inulin per acre, where $S S$ per acre $\times 80 \%$ inulin $=$ lbs/a.
${ }^{5}$ Root rot of unknown (undetermined) etiology, somewhat superficial but also causing complete root loss. insect or pest problem observed. Bolting minor. Kerb used for weed control.

Variety	Description	$\frac{\text { Acre Yield }}{\text { Beets }^{1}}$	$\frac{\text { Soluble }}{\text { Brix }^{2}}$	$\frac{\text { Solids }}{S^{3}}$	$\begin{aligned} & \text { Est. } \\ & \text { inulin } \end{aligned}$	$\begin{gathered} \text { Roots/ } \\ 100^{\prime} \\ \hline \end{gathered}$	$\begin{gathered} \text { Roots/ } \\ \text { Acre } \end{gathered}$	$\begin{gathered} \text { Roots/ } \\ \text { ha } \\ \hline \end{gathered}$	Bolting
		Tons	8	Acre 3	No. ${ }^{4}$	No.	No.	No.	\%
Madona	VDH,film coated,9-5-96	36.04	23.00	16563	13250	195	36494	90138	0.0
Orchies	F.Desprez, 2-2-98	31.41	23.98	15067	12053	204	38050	93982	0.0
Cassel	F.Desprez, 2-2-98	35.72	23.09	16513	13211	202	37696	93108	0.4
Bergues	hybrid, F.Desprez,2-2-98	33.73	22.92	15473	12379	203	37908	93632	0.0
Rubis	hyb., F.Desprez, 2-2-98	36.04	22.25	16025	12820	201	37484	92584	0.0
FD 9808	hyb., F.Desprez, 2-2-98	32.88	23.00	15116	12093	199	37272	92060	0.0
Faste	Nestle, 3-13-98	28.98	25.83	14961	11969	191	35786	88392	0.0
Oesie	Nestle, 3-13-98	30.92	24.50	15152	12121	193	36140	89264	0.0
Mean		33.21	23.57	15608.8	12487.0	198.5	37103.2	91645.0	0.1
LSD (.05)		2.37	0.67	1151.9	921.5	21.6	4044.6	9990.2	0.4
C.V. (\%)		6.10	2.42	6.3	6.3	9.3	9.3	9.3	692.8
F value		10.24**	24.23**	2.7*	2.7*	0.4 NS	0.4 NS	$\mathrm{S} \quad 0.4 \mathrm{NS}$	S 1.0NS

Moderate level of spider mites at harvest. Most severe on Faste \& Oesie.
TEST C197. CHICORY TRIAL, IMPERIAL VALLEY, CA., 1996-97

TEST C198. IMPERIAL VALLEY CHICORY TRIAL, IMPERIAL VALLEY, CA., 1997-98 Planted: October 6, 1997
Harvested: July 15, 1998

Projects 203 and 281

Specificity of TAS-ELISA for beet necrotic yellow vein virus and its application for differentiating rhizomania resistance in field grown sugar beets.

G. C. Wisler, R. T. Lewellen, J. L. Sears, H.-Y. Liu, and J. E. Duffus. USDA-ARS, Salinas, California.

The mention of firm names or trade products does not imply endorsement or recommendation by the U.S. Department of Agriculture over other firms or similar products not mentioned.

Abstract

Levels of beet necrotic yellow vein virus (BNYVV) as measured by TAS-ELISA were compared to biological evaluations in representative commercial and experimental sugar beet cultivars ranging in reactions to rhizomania from uniformly susceptible to highly resistant that were developed for production in the United States. Differences in absorbance ($\mathrm{A}_{405 \mathrm{~nm}}$) values measured among the eight cultivars closely corresponded to allelic dosage and to the frequency of the $R z$ allele that conditions resistance to BNYVV. A diploid ($R z r z$) hybrid had a significantly lower absorbance value than a similar triploid ($R z r z r z$) hybrid. Cultivars that segregated (Rzrz:rzrz) had higher absorbance values than uniformly resistant (Rzrz) hybrids as would be expected. For all cultivars, absorbance values decreased progressively as the season progressed. Absorbance values were significantly positively correlated with rhizomania disease index scores and negatively correlated with individual root weight, plot root weight, and sugar yield. This information is useful in resistance breeding and evaluation programs, and for the sugar industry in consideration of cultivar choice, inoculum production and rotations for future cropping. Additional keywords: TAS-ELISA, rhizomania, beet soil-borne mosaic virus (BSBMV), Polymyxa betae .

Introduction

Rhizomania of sugar beet (Beta vulgaris L.) is an economically important disease caused by the beet necrotic yellow vein furovirus (BNYVV). The virus is vectored by the protist-like fungus Polymyxa betae $(5,16)$ which survives in infested soil for many years in thick-walled fungal resting structures called cystosori $(1,2)$. Typical symptoms of rhizomania include a constricted taproot referred to as "wineglass" shape, with a proliferation of feeder roots (called "bearding") which appear brown due to the infestation of darkly-colored cystosori and root cell death. In severe infections, taproots show necrosis in the vascular system, or roots can be destroyed which can result in death of the beet $(7,21)$. Even in moderate infestations with rhizomania, sugar content and root yields are depressed. Foliar symptoms associated with an impaired root system appear as chlorotic patches in the field which may correspond to the movement of soil by cultivation equipment. The necrotic yellow vein of the leaf, for which the virus is named, is rarely seen in the field.

Control of rhizomania includes avoidance of infested fields by testing soil for BNYVV prior to planting, fumigation or solarization of soil where permitted, and the use of resistant cultivars (15). A wide range of sugar beet cultivars has been developed with varying degrees of resistance, or tolerance to rhizomania. Previous reports in England $(3,4)$ and the Netherlands (21) showed that sugar beet cultivars with different levels of resistance correlate with the levels of BNYVV detected in roots. Because infected lateral roots remain in the soil after harvest and
viruliferous cystosori survive until the next crop is planted, it is important to plant varieties which do not contribute to increasing levels of BNYVV.

Rhizomania was first recognized in the United States in 1983 in Paso Robles, California (7). Since then, the disease has become widespread throughout California $(22,23)$, and subsequently in other beet growing states $(23,24,26)$. Growers have been reluctant to plant rhizomania resistant seed because of lower yields and lower resistance to other diseases initially associated with these cultivars. However, in newly infested areas, growers have started to use rhizomania resistant cultivars because recently developed cultivars have the yield potential of nonresistant cultivars and are suited to their production conditions.

Resistance to rhizomania in most commercial sugar beet cultivars is conditioned by the dominant allele $R z$ (13) as well as by quantitative factors (12) that appear to modify the expression of $R z$. A number of cultivars with varying degrees of resistance to rhizomania based on different genetic backgrounds have been developed for the diverse production conditions throughout the United States (13).

One objective of this study was to determine relative levels of BNYVV in representative commercial and experimental sugar beet cultivars developed for production in the United States and to relate the BNYVV levels to allelic dosage of these cultivars. Cultivars selected ranged in their reactions to rhizomania from uniformly susceptible to resistant. Selection of rhizomania resistant parental lines of hybrid cultivars in the U.S. is based on their field performance, which includes symptom evaluation and on analyses for sugar content and root yield. In Europe, selections are commonly made by measuring virus content in ELISA tests from sugar beet seedlings grown under controlled conditions in greenhouses and growth rooms.

An additional objective was to develop an ELISA test that would show a wide range of BNYVV levels in infected roots, and would not cross-react with other furoviruses, thus causing a misdiagnosis of BNYVV (24). Information regarding different levels of BNYVV in resistant cultivars is important for the sugar industry and breeding programs whereby selection of resistant cultivars with the lowest levels of BNYVV available may effect the buildup of rhizomania in soils and give the highest protection.

Materials and Methods

Sugar beet cultivars: Sugar beet varieties were chosen to represent two geographically diverse growing areas in the United States, California and southern Minnesota (Table 1). The identical seed lots of all eight cultivars were grown throughout the study. The cultivar 'USH11' is an obsolete commercial hybrid formerly grown throughout California and is known to be highly susceptible to rhizomania, thus is used routinely in rhizomania studies as the susceptible check. The triploid 'KWS6770' is also susceptible to rhizomania and has been grown extensively in the upper midwestern states. Cultivar 'Beta4776R' is diploid: each plant is believed to carry one dose of the $R z$ allele ($R z r z$) derived from crossing a $R z R z$ parental line with a $r z r z$ line, and it is widely grown in California. The 'Beta 4038R' is a triploid hybrid with the same homozygous diploid source of resistance to rhizomania as Beta4776R and likewise carries a single dose of the $R z$ allele but genotypically is $R z r z r z$. It is targeted to beet growing areas in the upper midwestern United States and the eastern slope of the Rocky Mountains. Cultivar 'HM7072' is being tested for the same areas as 'Beta4038R' and is a diploid hybrid with each plant carrying a single copy of the $R z$ allele. The cultivar 'Rival' has wide adaptation. In addition to carrying the $R z$ allele, it is also reputed to have the rhizomania resistance from the widely grown cultivar 'Rizor'. Cultivar 'SS-781R' is diploid and each plant originally was thought to carry one copy of the $R z$ allele. It
now appears that this hybrid segregates for about 12% susceptible ($r z r z$) plants (Lewellen, unpublished data). The SS-781R has been an important variety in California in rhizomania infested areas, particularly in the San Joaquin Valley. Cultivar '6921H50' is an experimental hybrid developed by the USDA-ARS at Salinas and carries less than 50% frequency of both the Rz allele and resistance of unknown inheritance from Beta vulgaris spp. maritima sources (14). Serological Analysis of BNYVV: Previous studies have shown that polyclonal antisera to BNYVV cross-react slightly in ELISA tests and in western blot analyses with beet soil-borne mosaic virus (BSBMV), another furovirus infecting sugar beet $(22,23)$. This cross-reactivity is seen whether antiserum is prepared to the purified virions or to the capsid protein (CP) which has been expressed in vitro (25) (Fig. 1). The different molecular mass of the BNYVV CP (ca. 22 kDa) compared to that of BSBMV (ca. 24 kDa), however, allows for definitive differentiation of the two viruses in western blot assays (Fig. 1). Monoclonal antibodies produced to BNYVV (courtesy of L. Torrance and G. Grassi) and antiserum prepared to the C-terminal one third of BNVYY CP (courtesy of K. Richards) show complete specificity to all BNYVV isolates tested in both ELISA and western blot assays (23) (Fig. 1, Table 2).

Although western blot analysis provides conclusive distinction between BNYVV and BSBMV, the large numbers of samples to be assayed and the need for quantitation of BNYVV necessitated the use of ELISA tests for these studies. A TAS-ELISA was developed in collaboration with Agdia, Inc. that was specific for BNYVV, with no cross-reactions with BSBMV isolates (Table 2), and had the ability to obtain a wide range of absorbance values for BNYVV. Serial dilutions of BNYVV-infected leaf and root tissues showed a decrease in absorbance readings that corresponded to decreased concentrations of expressed plant sap (data not shown). Previous studies showed a clear relationship between virus concentrations in BNYVV-infected plants and absorbance values obtained in ELISA $(17,21)$. Preliminary TASELISA tests were made to confirm the specificity of this test for BNYVV (Table 2).

Polyclonal antiserum used as the trapping antibody was made from the BNYVV CP which was expressed in vitro (kindly provided by K. Richards). The pETH plasmid expressing the CP was identified by western blot assays and was used to transform the appropriate host for expression, E. coli strain BL21DE3pLysS, according to Studier et al. (20). An insoluble fusion protein of ca. 22 kDa was overexpressed and purified by SDS-PAGE as previously described (25). Antiserum was prepared in rabbits by Berkeley Antibodies (Richmond, California). This antiserum was used to coat microtiter plates (Immulon I; Chantilly, VA) at a $1 / 1000$ dilution in coating buffer (0.05 M sodium carbonate, pH 9.6).

Plant samples consisted of fibrous lateral roots which had been scraped from each beet, and added to 2 ml of extraction buffer (phosphate-buffered saline, pH 7.2 with 0.5% Tween 20 and 0.4% dry milk powder). Root tissues were macerated in sample extraction bags using a hand held roller press (Agdia, Inc.). Expressed sap was added as paired wells to plates at $150 \mu \mathrm{l}$ per well. A list of computer-generated random numbers was used to determine the placement of the 576 test samples per harvest on 23 microtiter plates. Each plate also contained paired wells with (i) sample buffer only (ii) a rhizomania diseased root and healthy root tissues in sugar beet (Beta vulgaris L.), (iii) a non-inoculated, and (iv) a BNYVV-systemically infected B. macrocarpa (B. vulgaris spp. maritima var. macrocarpa) leaf (Table 3).

The BNYVV monoclonal antibody used as the detecting antibody and the goat-antimouse IgG-alkaline phosphatase conjugate were provided by Agdia and used according to
instructions. Absorbance readings ($\mathrm{A}_{405} \mathrm{~nm}$) were made at 15 minute intervals up to 2 hr using a Bio-Tek EL312e microplate reader (Winooski, VT).
Field Trials: Field trials were conducted at the USDA-ARS, U.S. Agricultural Research Station, Salinas, California, where rhizomania tests have been conducted on infested land since 1984. The primary test in this study, Test A, was planted 1 May 1997 in a split-plot design, where harvest dates were the main plot, with eight cultivars (subplots) randomized into three harvest dates (July 14 , August 18 , October 20), and eight replications. The plots were over-seeded and plants at the two-leaf stage were thinned to a spacing of 16 cm between single plants. Standard best cultural practices were used including weed, insect and disease control. Sprinkler irrigation was used throughout the season at weekly intervals to field capacity in order to enhance rhizomania development. Observations at Salinas over many years has suggested that BNYVV levels, as measured by ELISA, vary depending on timing of irrigation (wetting-drying periods). For this reason, we felt it necessary to measure virus content from the field trial at each harvest three days after the most recent irrigation. For the first two harvests, plots were 2.3 m long with 0.6 m alleys. Excluding end plants, nine beets were randomly harvested within each plot. For the third harvest, plots were longer than for the first two harvests, at 5.2 m long, to accommodate both laboratory and yield evaluations. Plots were adjusted to 3.6 m following consecutive individual plant harvests from 1.6 m near one end of each plot.

In each of the three harvests, the 9 randomly selected beets from each plot (72 plants per cultivar; 576 plants per harvest date) were dug by hand, topped just above the lowest leaf scar, and washed free of soil particles. Fibrous roots were scraped from each beet, 0.5 g of which was taken for the ELISA test. In the first harvest, only the TAS-ELISA was done. In the second and third harvests, TAS-ELISA tests were done, tap roots were individually weighed, and each beet root was scored according to a rhizomania disease index (DI). This root score index was adapted using a scale of 0 to 9 to comply with the international scale for sugar beet germplasm evaluation (Fig. 2) where $0=$ no visual symptoms, $1=$ very resistant (nearly normal taproot and minor bearding), $3=$ resistant (taproot slightly to moderately constricted, moderate bearding and taproot discoloration), $5=$ intermediate (taproot wineglass shaped, feeder roots bearded, taproot discolored), $7=$ susceptible (severe bearding and stunting, taproot destroyed) and $9=$ highly susceptible (death of beet). Beets were harvested mechanically at the end of the third harvest, weighed and run through a standard sugar laboratory to measure sucrose concentration. Sugar yield was calculated from plot weight and sucrose concentration.

In adjacent duplicated field trials, the eight cultivars were evaluated for yield under similar disease pressure and cultural practices. These trials, B, C, D, and E were randomized complete block designs with eight replications. One-row plots were 72 cm wide and 6.1 or 6.4 m long. Test D was hand harvested and topped, and roots were scored for rhizomania on the 0-9 DI scale. Classes 0-3 were considered resistant and 4-9 susceptible. Following root scoring, all beets were bulked by plot, washed, weighed, and run through the sugar analysis laboratory. The other field trials were mechanically harvested for yield and sugar analysis so individual beets were not scored for reactions to rhizomania.
Data analysis: Data from three harvest dates obtained from individual plants (576 plants per harvest) within each plot of test A were averaged and used for statistical analyses. These data consisted of ELISA values, DI (root score), root yield, per cent sucrose, and sugar yield. Initially all data were analyzed for the split-plot analysis at Salinas using MSTAT, where harvest dates were the main plots. Heterogeneity of variances occurred for optical densities as measured by

TAS-ELISA and individual root weights. Analyses of these traits were done with SAS PROC MIXED (SAS Institute Inc., Cary, N.C.). The data were transformed by natural logs which alleviated the heterogeneity for root weights and greatly reduced the heterogeneity for optical densities. For the optical densities and root weights, the means and confidence intervals were transformed back to the original scale. For correlations among absorbance ($\mathrm{A}_{405 \mathrm{~nm}}$), absorbance of test sample/absorbance of healthy roots ($\mathrm{abs} / \mathrm{H}$), root score, root weight, per cent sucrose, and sugar yield, the date X variety means were used (Table 4). Data obtained from the individual randomized complete block tests $\mathrm{B}, \mathrm{C}, \mathrm{D}$, and E to evaluate performance of the eight varieties were also analyzed using MSTAT.

Results

Serological analysis: The TAS-ELISA test modified specifically for this study gave no background cross-reaction with healthy samples or with other furoviruses of sugar beet, in particular, isolates of BSBMV from Texas and Minnesota (Table 2). A wide range of readings were observed with different BNYVV samples of varying serial dilutions, thus providing for the ability to measure differences in BNYVV content among resistant and susceptible sugar beet varieties.

Differences in absorbance $\left(\mathrm{A}_{405 \mathrm{~nm}}\right)$ values for BNYVV measured by TAS-ELISA among the eight cultivars closely corresponded to dosage and frequency of the $R z$ allele that conditions resistance to BNYVV (Table 3). The diploid Rzrz hybrid Beta4776R had a significantly lower value than the similar triploid Rzrzrz hybrid Beta4038R. Cultivars that segregated Rzrz:rzrz (i.e., SS-781R and 6921 H 50) had higher absorbance values than the uniformly resistant Rzrz hybrids Beta4776R and HM7072.
Field Trials: For all cultivars, differences were observed among harvest dates, with progressively lower absorbance values measured as the season progressed, particularly from July 14 to August 18. A highly significant cultivar with date of harvest interaction occurred. This interaction can largely be explained by rate and magnitude of decrease in absorbance values for the susceptible cultivars compared to the resistant ones. Absorbance readings for the July 14 harvest clearly discriminated differences in varietal reactions more distinctly than did the subsequent harvests (Table 3). Differences in varieties based only upon the TAS-ELISA results from the third harvest date did not show allelic dosage and frequency effects as clearly as in the first two harvests.

There are close associations between the variables used to evaluate reactions to rhizomania, including, absorbance ($\mathrm{A}_{405 \mathrm{~nm}}$), absorbance/healthy, root score and root weight (Table 4). There was nearly a perfect correlation between absorbance readings of test samples and absorbance of test samples divided by those of healthy roots grown in pasteurized soil (absorbance/healthy), indicating extremely low background reactions and very little plate-to-plate variability and experimental error. The highly significant positive correlations between absorbance/healthy values and root scores ($r=0.87,0.95$ for dates 2 and 3 , respectively) showed that visual disease reaction scores of these roots were highly correlated with virus concentration.

Correlations between absorbance/healthy and root weight ($\Gamma=-0.89,-0.76$ for harvest dates 2 and 3 , respectively) were negative as would be expected (Table 4). These inverse correlations suggested that high virus concentration or rhizomania disease reactions could be predicted by tap root weight. Root weights and disease scores also were highly inversely correlated ($\mathrm{r}=-0.91$, 0.87 at $\mathrm{p}=0.01$ for harvest dates 2 and 3 , respectively). Also, as shown by the harvest date results, virus levels decreased through the course of the season.

In addition to the primary test A , in which the roots were evaluated three times during the growing season for reactions to BNYVV by ELISA, the rhizomania disease index, root yield, per cent sucrose, and sugar yield, four additional replicated tests (B, C, D, and E) were grown at Salinas under moderate and severe incidences of rhizomania, as measured by the above parameters (Table 5). Tests B and C were intended to be rhizomania-free, but at harvest it was obvious from root symptoms that these fields were moderately infested. Thus, no rhizomania-free test was available for comparison. In all tests, the two susceptible checks had significantly lower yields than the more resistant entries (Table 5). Comparison of sugar yield between Beta4776R (Rzrz) and Beta4038R (Rzrzrz) under the two moderate tests (B and C) and the two severe tests (D and E) (Table 5) again suggested that the level of resistance conditioned by allelic dosage was reflected in root yield, per cent sucrose, and sugar yield. Under moderate rhizomania conditions, the yield difference was small (ca. 4\%) between these two cultivars and not significantly different, whereas under the severe conditions the difference was larger (ca. 13\%) and significantly different. In all tests, under severe disease pressure, the advanced hybrid Beta4776R tended to have the highest root and sugar yields. Roots from test D were individually scored for reaction to rhizomania at harvest. There was a good correlation and comparable ranking of the root score means for varieties across tests D and A for the corresponding harvest date (date 3 for test A). These tests support the data and interpretations made for test A.

Three cultivars for which the genetics are well documented were chosen as the best representatives of distinct allelic dosages to illustrate the association between the $R z$ allele and the three variables which were measured in this study, including absorbance, root score and root weight (Fig. 3). These cultivars range from uniformly susceptible (rzrzrz; KWS6770) to diploid resistant (Rzrz; Beta4776R) to triploid resistant (Rzrzrz; Beta4038R). A strong negative correlation was shown between an increasing dosage of the $R z$ allele and absorbance and root score, but a positive correlation was shown with root weight.

Discussion

Our studies have shown that the current field evaluation system used in the U.S. by industry and public agencies is equally suitable to the more laborious and expensive evaluation by ELISA assays. Using varieties that are currently important to the U.S. beet production, we showed that the ELISA readings are significantly correlated with root score, and negatively with root weight and $\%$ sucrose. These readings and evaluations, when compared against a range of rhizomania susceptible and resistant cultivars indicate these data can be useful for prediction of the genetic background of cultivars about which less is known. Root weights and visual scoring are usually made much more easily in a breeding or testing program than absorbance measurements from ELISA tests.

The agronomic data for test A appear to be valid and, under the conditions of these tests, consistently measured and differentiated varietal reactions to BNYVV. There was a high correlation between the dosage and frequency of the $R z$ allele and BNYVV levels in lateral roots, as measured by TAS-ELISA. It would be expected, and it was shown, that within hybrids such as SS-781R, that fully susceptible ($r z r z$) segregants in the hybrid would increase the mean virus content. When individual plant ELISA, visual, and yield ratings were examined and taken into account for hybrids such as SS-781R, the plants that were probably Rzrz have values similar to Beta4776R and the putative $r z r z$ plants were similar to USH11 or KWS6770. Of more interest was the relationship between allelic dosage and virus levels. It was clear that in terms of virus levels, $R z r z<R z r z r z<r z r z \cong r z r z r z$. Incomplete dominance (gene dosage) is a common
phenomenon for host-plant resistance to viruses. Fraser (9) found that many virus resistances inherited at a single locus were expressed in an incompletely dominant manner. Pelsey and Merdinoglu (18) showed that $R z$ was inherited as incompletely dominant when measured by virus content of greenhouse grown plants in standardized inoculum tests. Our results suggest that a further increment of resistance may be achievable in sugar beet hybrids. It is likely that the $R z R z$ genotype would then produce less virus than the currently employed $R z r z$ or $R z r z r z$ genotypes. As time and resources permit, it will likely behoove breeders to develop homozygous $R z R z$ parental lines for all of the components of commercial hybrid cultivars. These more resistant $R z R z$ cultivars could give a higher level of protection against rhizomania and could certainly be important in limiting inoculum buildup in soils. This lag in the use of only $R z R z$ parental lines components reflect the time and efforts necessary to incorporate and fix a single gene into all component lines and advanced breeding material. Experimental, homozygous resistant lines are available and will be included in future research along the lines of this study.

Correct diagnosis of BNYVV can be confounded by low levels of cross-reactivity with other furoviruses, in particular BSBMV, as has been previously demonstrated. In addition, levels of BNYVV, which is dependent on the production of viruliferous P. betae zoospores, can vary in sugar beets during the growing season in rhizomania-infested fields. This study shows what has been observed over the years by researchers, that levels of BNYVV can change during a growing season. As the season progressed in this study, levels of BNYVV continued to decline as measured by TAS-ELISA, in spite of the presence of well developed rhizomania symptoms, regardless of the cultivar. This could be due to several factors which are unknown at this time but could include plant susceptibility as it declines with age, where younger plants are more susceptible than older ones, or climatic conditions during the season. These results confirm observations over many years at Salinas that late summer BNYVV titer values do not seem to reflect varietal reactions. These results suggest that because of the effects of plant age, environmental factors and/or sampling techniques, timeliness is an important consideration in use of ELISA to evaluate varietal reactions to BNYVV when testing directly from field-grown beets. Because sugar beet is not considered to be a good systemic host for BNYVV due to the extremely low occurrence of systemic symptoms and restriction of BNYVV primarily to the area of proliferated roots (10) the level of BNYVV in sugar beet roots is dependent on the activity of the vector which itself is dependent on soil temperature, soil moisture content, and beet root exudates.

This study shows that the breeder or agronomist can be fairly confident of measuring varietal reactions to rhizomania by scoring and weighing field grown material. Root weights and visual scoring are usually made more easily in a breeding or testing program than absorbance measurements from ELISA tests. This information is useful in resistance breeding and evaluation programs and for the sugar industry in consideration of cultivar choice, inoculum production and rotations for future cropping.

In addition to the $R z$ (Holly source) resistance factor, other sources of resistance to rhizomania have been found (11). Some of these sources appear to be the $R z$ allele, but others appear to be different from $R z$ (19). At least one of the sources, when tested under severe rhizomania conditions provides better protection than $R z(11,15)$. Tests are underway to map each of these sources of resistance, determine their allelism, and identify molecular markers $(8,18,19)$. If additional major genes at different loci are discriminated, these may reduce the vulnerability of $R z$. In addition, preliminary evidence suggests that one or more of these genes
condition lower levels of BNYVV content than $R z$. With marker assisted selection, it may become feasible to combine multiple resistance factors into individual cultivars to obtain improved resistance to rhizomania, further decrease BNYVV inoculum production (17), and provide more durable resistance.

Acknowledgment: We thank Tim Gottwald and Bruce Mackey for their advice and assistance regarding statistical analyses.

Literature Cited

1. Abe, H., and Tamada, T. 1986. Association of beet necrotic yellow vein virus with isolates of Polymyxa betae Keskin. Ann. Phytopathol. Soc. Japan 52:235-247.
2. Abe, H., and Ui. T. 1986. Host range of Polymyxa betae Keskin strains in rhizomania-infested soils of sugar beet fields in Japan. Ann. Phytopathol. Soc. Japan 52:394-403.
3. Asher, M. J. C., and Kerr, S. 1996. Rhizomania: progress with resistant varieties. British Sugar 64:19-22.
4. Asher, M. J. C., Mutasa-Goettgens, E. S., and Chwarszcynska, D. M. 1997. Rhizomania: the role of vectors and virus resistance in sugar beet. p. 35 In 60 th I.I.R.B. Congress. Cambridge, UK.
5. Barr, D. J. S. 1992. Evolution and kingdoms of organisms from the perspective of a mycologist. Mycologia 84(1):1-11.
6. Duffus, J. E., and Liu, H.-Y. 1987. First report of rhizomania of sugar beet from Texas. Plant Dis. 71:557.
7. Duffus, J. E., Whitney, E. D., Larson, R. C., Liu, H. Y., and Lewellen, R.T. 1984. First report in Western hemisphere of rhizomania of sugar beet caused by beet necrotic yellow vein virus. Plant Dis. 68:251.
8. Francis, S. A., Redfearn, M., Lewellen, R. T., Asher, M. J. C. 1998. An AFLP marker for rhizomania resistance in sugarbeet. (In press).
9. Fraser, R. S. S. 1987. Genetics of plant resistance to viruses. p. 6-22 In: Plant Resistance to Viruses. Wiley, Chichester (Ciba Foundation Symposium 133). London 31 March-2 April 1987.
10. Kaufmann, A., Koenig, R., and Lesemann, D.-E. 1992. Tissue print-immunoblotting reveals an uneven distribution of beet necrotic yellow vein and beet soil-borne viruses in sugarbeets. Archives of Virology 126:329-335.
11. Lewellen, R. T. 1995. Performance of near-isolines of sugarbeet with resistance to rhizomania from different sources. p. 83-91 In: Proc. 58th I.I.R.B Congress, Beaune, France.
12. Lewellen, R. T., and Biancardi, E. 1990. Breeding and performance of rhizomania resistant sugarbeet. p. 69-87 In: 53 rd Winter Congress, I.I.R.B., Brussels, Belgium.
13. Lewellen, R. T., Skoyen, I. O., and A. W. Erichsen. 1987. Breeding sugarbeet for resistance to rhizomania: evaluation of host-plant reactions and selection for and inheritance of resistance. p. 139-156 In: 50th Winter Congress, I.I.R.B. Brussels, Belgium.
14. Lewellen, R. T., and Whitney, E. D. 1993. Registration of germplasm lines developed from composite crosses of sugarbeet X Beta maritima. Crop Science 33:882-883.
15. Lewellen, R. T., and Wrona, A. F., 1997. Solarization and host-plant resistance as alternatives to soil fumigation to control rhizomania of sugarbeet. Proc. 60th I.I.R.B. Congress. Cambridge, UK. p. 189-201.
16. Margulis, L. and Schwartz, K. V. 1988. Plasmodiophoromycota. pp. 136-137 In Five Kingdoms. W. H. Freeman \& Co., New York.
17. Obermeier, C. 1998. DNA-gestutzte nachweisverfahren fur den virusubertragenden Bodenpilz Polymyxa betae und ihr einsatz im rizomania-resistenztest bei zuckerruben. Ph. D. thesis. Technischen Universitat Carolo-Wilhelmina zu Braunschweig, Germany.
18. Pelsy, F., and Merdinoglu, D. 1996. Identification and mapping of random amplified polymorphic DNA markers linked to a rhizomania resistance gene in sugar beet (Beta vulgaris L.) by bulked segregant analysis. Plant Breeding 115:371-377.
19. Sholten, O. E., Klein-Lankhorst, R. M., Esselink, D. G., DeBock, T. S. M., and Lange, W. 1997. Identification and mapping of random amplified polymorphic DNA (RAPD) markers linked to resistance against beet necrotic yellow vein virus (BNYVV) in Beta accessions. Theor. Appl. Genet. 94:123-130.
20. Studier, F. W., Rosenberg, A. H., Dunn, J. J., and Dubendorff, J. W. 1990. Use of T7RNA polymerase to direct expression of cloned genes. Methods in Enzymology 185:60-68.
21. Tuitert, G., Musters-Van Oorschot, P. M. S., and Hiejbroek, W. 1994. Effect of sugar beet cultivars with different levels of resistance to beet necrotic yellow vein virus on transmission of virus by Polymyxa betae. Eur. J. Plant Pathol. 100:201-220.
22. Wisler, G. C., Duffus, J. E., Liu, H.-Y., Kerr, E., and Gallian J. J. 1994a. Incidence of two soil borne viruses of sugar beet in the U.S. Phytopathology 84:1171. (Abstr.).
23. Wisler, G. C., Liu, H.-Y., and Duffus, J. E. 1994b. Beet necrotic yellow vein virus and its relationship to eight sugar beet furo-like viruses from the U.S.A. Plant Dis. 78:995-1001.
24. Wisler, G. C., Liu, H.-Y., Li, R. H., \& Duffus, J. E. 1996. Comparative molecular analysis of several BNYVV- and BSBMV- related furoviruses infecting sugarbeet. Proc. Third Intl. Working Group on Plant Viruses with Fungal Vectors, Dundee, Scotland 53-56.
25. Wisler, G. C., D. E. Purcifull, and E. Hiebert. 1995. Characterization of the P1 protein of the zucchini yellow mosaic potyvirus. J. Gen. Virol. 76:37-45.
26. Wisler, G. C., Widner, J. N., Duffus, J. E., Liu, H.-Y. and Sears, J. L. 1997. A new report of Rhizomania and other furoviruses infecting sugar beet in Minnesota. Plant Disease 81:229.

Table 1. Sugar beet hybrids evaluated in virus titer experiments
Salinas, California, 1997 growing season

Identification	Source	Description	Genotype
USH11	USDA-ARS	diploid susceptible	$r z r z$
KWS6770	Betaseed	triploid susceptible	$r z r z r z$
Beta4776R	Betaseed	diploid resistant	$R z r z$
SS-781R	Spreckels	diploid segregating	Rzrz:rzrz
Rival	Holly	diploid resistant	$R z r z$
HM7072	Novartis	diploid resistant	$R z r z$
Beta4038R	Betaseed	triploid resistant	Rzrzrz
6921H50	USDA-ARS	diploid segregating	B. maritima hybid

Table 2. TAS-ELISA readings for BNYVV and BSBMV using BNYVV antisera ${ }^{2}$

Test Sample	Absorbance(A405) ${ }^{\text {b }}$
BNYVV beet roots	2.227
BNYVV B. macrocarpa	2.770
BSBMV-TX B. macrocarpa	0.127
BSBMV-MN B. macrocarpa	0.132
Healthy beet roots	0.153
Healthy B. macrocarpa	0.127

${ }^{3}$ TAS-ELISA using polyclonal (trapping) and monoclonal (detecting) antibodies to BNYVV. Preliminary tests for specificity to BNYVV.
${ }^{\text {b }}$ Absorbance at A_{405} represents the average of at least two wells. Tests conducted in greenhouse.
Table 3. TAS-ELISA readings (A_{405}) of BNYVV for varieties, dates of harvest, varieties X dates; test A

Variety	Genotype	July 14	August 18	October 22	Mean
USH11	$r z r z$	$0.947^{2} \mathrm{a}^{\text {b }}$	0.365c	0.226 efg	0.513b
KWS6770	rzrzrz	1.024a	0.414c	0.341 cd	0.593a
Beta4776R	Rzrz	0.257def	0.150 ghi	0.117 hi	0.175 de
SS-781R	Rzrz:rzrz	0.343 cd	0.164 fghi	0.140 ghi	0.216 de
Rival	Rzrz	0.316 cde	0.138 ghi	0.128 ghi	0.195 de
HM7072	Rzrz	0.218 efg	0.111 i	0.138 ghi	0.156 e
Beta4038R	Rzrzrz	0.562 b	0.220 efg	0.212 fgh	0.332 c
6921H50	unknown	0.356 cd	0.192 fghi	0.155 ghi	0.234 d
Mean		0.503a	0.219 b	0.182 b	0.302
Healthy beet root		0.105	0.096	0.102	0.101
BNYVV beet root		0.513	0.372	0.482	0.456
Healthy B.mac.		0.106	0.098	0.103	0.103
BNYVV B. mac.		1.654	1.031	2.345	1.677

Table 4. Coefficients of correlation among treatment means from two harvest dates. ${ }^{2}$

${ }^{2}$ The correlations for harvest date two (August 18) are above the diagonal and those for date three (October 22) are below.
${ }^{\mathrm{b}}$ Absorbance at $\left(\mathrm{A}_{405 \mathrm{~nm}}\right)$ for test samples divided by the absorbance for healthy root samples. * significant at the 0.05 level of probability. ** significant at the 0.01 level of probability.
Table 5. Performance of sugar beet cultivars under differing severities of rhizomania.

	Test B ${ }^{\text {a }}$			Test $\mathrm{C}^{\text {b }}$		
	Sugar Yield (kg/ha)	Root Yield (t / ha)	Sucrose (\%)	Sugar Yield (kg/ha)	Root Yield (t / ha)	Sucrose (\%)
Susceptible checks						
USH11	4938	51.6	9.5	5824	56.6	10.3
KWS6770	5406	50.7	10.6	8356	64.0	13.1
Resistant hybrids						
Beta4776R	10848	81.2	13.4	13669	93.7	14.6
SS-781R	8692	72.5	11.9	10948	81.1	13.5
Rival	8789	66.1	13.3	11533	80.9	14.3
HM7072	10294	69.4	14.8	12955	82.1	15.8
Beta4038R	10180	72.5	14.1	13310	84.6	15.7
USDA exp. hybrid						
6921H50	9524	76.9	12.3	11520	84.8	13.6
LSD ($\mathrm{P}=.05$)	946	6.0	0.8	1017	6.1	0.6
${ }^{a b}$ Test B and C grown at Salinas under moderate rhizomania conditions. Planted 10 April 97; Harvested 2 October 1997, 29 September 1997, respectively. 1 -row plots, 6.4 m long. Eight replications; randomized complete block (RCB) design.						

Table 5, cont'd. Performance of sugar beet cultivars under differing severities of rhizomania.

BNYVV-PAb
lanes 1-4; BNYVV isolates

- $=$

BSBMV-PAb
5-9; BSBMV isolates

Fig. 1. SDS-PAGE and corresponding western blot of beet necrotic yellow vein virus (BNYVV) and beet soil-borne mosaic virus (BSBMV) isolates:
top left: Coomassie stained gel using purified virus preparations, top right: Western blot using a monoclonal antibody (Mab) to BNYVV, bottom left: Western blot using polyclonal (PAb) BNYVV antiserum, and bottom right: polyclonal antisera to BSBMV.

Lanes 1-4; BNYVV isolates: 5-9; BSBMV isolates.
Lane 1; BNYVV-California, lane 2; BNYVV-Nebraska, lane 3; BNYVV-Colorado, lane 4; BNYVV-Minnesota. Lanes 5 and 6 ; two BSBMV isolates from Texas, lane 7; BSBMVNebraska, lane 8; BSBMV-Colorado, lane 9; BSBMV-Minnesota.

The Coomassie gel shows the molecular mass of the BNYVV isolates at ca. 22 kDa and the BSBMV isolates at ca. 24 kDa . The western blots show specificity for BNYVV using the BNYVV MAb, and reciprocal cross-reactivity between BNYVV and BSBMV using respective PAbs.

Fig. 2. The rhizomania disease index used in this study was adapted using a scale of 0 to 9 to comply with the international scale for sugar beet germplasm evaluation where $0=$ immunity (no visual symptoms; not shown), $1=$ very resistant (top left; nearly normal taproot and minor bearding), $3=$ resistant (top right; taproot slightly to moderately constricted, moderate bearding and taproot discoloration), 5=intermediate (bottom left; taproot wineglass shaped, feeder roots bearded, taproot discolored), $7=$ susceptible (bottom right; severe bearding and stunting, taproot destroyed) and $9=$ highly susceptible (death of beet; not shown).

Fig. 3. Three cultivars which range from uniformly susceptible (rzrzrz; KWS6770) to diploid resistant (Rzrz; Beta4776R) to triploid resistant (Rzrzrz; Beta4038R) for beet necrotic yellow vein virus (BNYVV) were chosen to illustrate the association between dosage of the $R z$ allele and three variables which were measured in this study, including absorbance in TAS-ELISA for BNYVV at $\mathrm{A}_{405 \mathrm{~nm}}$, rhizomania root score and root weight. A highly negative correlation was observed between an increasing dosage of the $R z$ allele and absorbance values for BNYVV for the three harvest dates. For the last two harvest dates, a negative correlation was observed between allelic dosage and root score, whereas a highly positive correlation was observed between allelic dosage and root weight.

Decline in Sugar Beet Yield in the Central United States: Possible Causes, Management, and Future Studies

Gail C. Wisler USDA-ARS, Salinas, CA

Introduction
A significant decrease in sugarbeet yield has been observed throughout the Eastern Slopes of the United States for the past few years. Possible causes which have been suggested include Rhizomania, selections of sugarbeet varieties which are not suited to the area in production, or soil-borne fungal, bacterial, and other viral pathogens.

The objectives of this study during 1998 were: (i) to determine if any soil-borne pathogens are associated with the decline in sugarbeet production in affected fields, and (ii) to determine if abiotic agents are responsible for the yield decline.

Part I. Germination rates, soil chemistry, and assays for fungal or bacterial organisms.

> Materials and Methods

Eight seed sources used in the assays were representative of the varieties planted in recent years throughout the affected region (Table 1). In addition, USH1 1 was used as a variety that is susceptible to soil-borne furoviruses including beet necrotic yellow vein virus (BNYVV; the cause of Rhizomania), beet soil-borne mosaic virus (BSBMV) and beet soil-borne virus (BSBV).

Table 1. Sugar Beet Hybrids Used in Soil Assays Salinas, California, 1998	
Identification	Lot ID
USH11	none
Beta4776R	4776.6102
HM9155	7M4234
HM-D2	3M4408
SX Monohikari	7039
Beta 1399	L1399.5322
Beta4038R	6KJO190
Crystal 205	$7-11$

Soil samples from 25 fields were collected for analysis. These soils originated from fields where yield decline had been documented, as well as an unaffected field, and one which had previously been identified as being infested with Rhizomania. Soil from the USDA-ARS research station in Salinas, California were also used as a rhizomania positive control. Pasteurized river sand was used as a negative control. Approximately 100 seeds of each variety were planted in $4^{\prime \prime}$ pots in a standard Rhizomania assay. This consisted of mixing each soil sample with an equal volume of pasteurized river sand, which were then used to fill sterile plastic pots. Pots were maintained in a greenhouse with temperatures ranging from $68-80 \mathrm{~F}$. Pots were evaluated for germination rates, symptom expression, and were harvested after six weeks. Roots were washed free of soil and used for the fungal, bacterial, and viral assays.

Results

The first thing that was noticed in the soil assay was the extremely poor germination rates for several of the soil samples (Table 2). Soil samples were not received all at the same time, nor did our rhizomania greenhouse accomodate the number of samples received, so planting was staggered over time. However, the germination rates and symptoms of yellowing and distortion of seedlings were observed over the entire period of time samples were planted. As a check, some of the same soils which had shown poor germination rates and yellow symptoms were planted several times throughout the year. In addition, each time a set of soils were set up in the greenhouse, pasteurized river sand was also planted with the same eight varitieis. None of the problems with germination or symptom expression was observed in the pasteurized river sand, indicating that some factor in the soil samples from the test samples was contributing to the effects observed. Symptoms observed were suggestive of extremely low levels of residual herbicide. These levels are low enough that a chemical analysis would not likely produce any measurable data, whereas planting with sugarbeet seedlings is more sensitive. The identity of the compound which may be responsible for these symptoms, however, cannnot be ascertained by this method.

Three soil samples which showed some of the lowest germination rates and yellowing symptoms (R. Hoff, L. Green, Maser) were submitted to the Soil Control Lab in Watsonville, California for a standard soil assay, including pH and nutrient levels. Nothing in the soil analysis indicated any parameter that was out of the normal range for soil from these areas. The pH ranged from 7.7-8.0, which is normal for this area, and for sugarbeet production.

To test for fungal or bacterial organisms which may contribute to the decline in yield experienced by growers in the affected areas and to the poor germination rates observed in our greenhouse, seedlings were plated on selective media and a general medium and observed for growth of organisms. No Pythium sp., Phytophthora sp., or Aphanomyces sp. were found infecting these seedlings. Nor was any bacterial organism observed in these assays.

To further ascertain if any biological organism was responsible for the poor germination and yellowing effects observed, four soils which had showed poor germination and yellowing symptoms were used in a pasteurization study (Table 3). Each soil was divided, and one half was pasteurized. The pasteurized soil and soil that had not been pasteurized were each planted into SX Monohikari and UHS-11. These varieties were chosen because SX Monohikari had shown the poorest germination rates, and USH-11 had relatively high germination rates. The pasteurization study did not indicate any significant differences in the germination rates observed, and yellowing symptoms were consistent throughout this study as well.

Table 2. Germination Rates for Soil Samples: Eastern Slopes Decline 1998^{2}
Sugarbeet Varieties

	Sugarbeet Varieties							
Field ID	$\begin{aligned} & \text { Crystal } \\ & 205 \end{aligned}$	SX Monhikari	$\begin{array}{\|l} \text { Beta } \\ 4038 \mathrm{R} \end{array}$	Beta	$\begin{aligned} & \hline \mathrm{HM} \\ & 9155 \end{aligned}$	$\overline{\mathrm{HM}-}$	$\begin{aligned} & \text { Beta } \\ & 1399 \end{aligned}$	$\begin{aligned} & \hline \text { USH- } \\ & 11 \end{aligned}$
Meisner*	med	low	med	low	high	med	low	med
Maser*	med	low	low	med	high	low	low	med
R. Hoff*	high	low	low	low	high	low	low	med
Hoff N1/2*	med	low	med	low	high	low	low	med
Maiser*	low	low	low	low	med	med	low	low
Green*	med	low	med	low	med	med	low	high
Meisner*	high	high	high	low	low	med	low	high
Klien	high	high	high	low	high	low	high	high
Ross	high	low	high	low	med	high	high	high
Schlager	high	high	high	med	high	med	high	med
Green *	high	med	high	low	high	high	high	high
Weglin	high	high	high	low	high	high	high	low
Kaufman*	med	high	high	med	high	low	low	low
Hodge	high	high	med	low	high	high	high	high
Kaufman*	med	low	low	low	low	low	low	high
Ross*	med	low	low	low	low	low	low	med
Green*	low							
BBAlliance*	high	low	low	med	low	low	low	med
Hodge*	high	low	high	low	med	low	low	high
M. Klien*	med	low	low	low	high	low	high	high
R. Hoff*	low	low	low	low	med	low	low	high
DS*	low	med						
Keener*	high	med	high	high	high	med	med	high
Richey\#1*	high	low	high	high	high	high	med	high
Rich Neb\#1	high	low	low	med	high	high	low	high
Average\#1*	high	high	high	med	high	high	low	high
D\&C\#1*	high	low	high	high	high	high	low	high
Chalk\#1*	high	low	low	high	high	high	low	high
sterile sand	high							

${ }^{2}$ low $=0-33 \%$ germination
med $=33-66 \%$ germination
high $=66-100 \%$ germination
*indicates soils which showed severe yellowing and distortion of seedlings.

Table 3. Effect of Pasteurization on Germination Rates for Selected Soil Samples

Soil Sample	Pasteurized		Non-Pasteurized	
	SX Monohikari	USH11	SX Monohikari	USH11
Green*	low	high	low	medium
Meisner-Gering* *	low	medium	low	high
Maser* $^{\text {Randy Hoff* }}$	low	medium	low	medium
sterile sand	low	medium	low	medium

${ }^{2}$ low $=0-33 \%$ germination
medium $=33-66 \%$ germination
high $=66-100 \%$ germination
*indicates soils which showed severe yellowing and distortion of seedlings.

Part II: Virus assays: BNYVV, BSBMV, and BSBV

Materials and Methods

Washed roots from the greenhouse study were tested in an ELISA assay for BNYVV and BSBMV. The BNYVV test was a modified ELISA called triple antibody sandwich ELISA (TASELISA) which is completely specific to BNYVV. This makes use of a polyclonal BNYVV antibody as the "trapping" antibody and a monoclonal antibody to BNYVV as the "detecting " antibody. The polyclonal antibody was a serum that was produced in our lab made from a cloned BNYVV coat protein (clone courtesy of Ken Richards) and is known to react the same was as a standard antibody from the purified virus. The advantage in this serum used is that there is an unlimited supply of antigen for antisera production, and it is a "pure" antigen, with no risk of contamination by other viruses. The BSBMV was tested in a standard double antibody sandwich ELISA (DAS-ELISA) since ther is no monoclonal antibody available for this virus.

In addition to the ELISA tests, each root sample was used to mechanically inoculate a series of indicator plants which are known to be susceptible to a wide range of sugarbeet virues. These plants consisted of: Chenopodium quinoa, Nicotiana benthamiana, Beta vulgaris,'USH11', B. macrocarpa. Symptoms were recorded after 1-2 weeks. Leaves from symptomatic plants were retested by ELISA and also by western blot analysis for confirmation of the original diagnosis.

Since there is a limited supply of antiserum to BSBV, diagnosis was made for this virus by isolating the large, spreading necrotic local lesions characteristic of this virus on C. quinoa, increasing the virus, and testing each isolation using antisera to two serogroups of BSBV from Europe (antiserum courtesy of R. Koenig).

Results

Results from the virus assays are shown in Table 4. Out of 27 soil samples tested, 2 were positive for BNYVV (rhizomania), 18 were positive for BSBMV, 15 were positive for BSBV, and 9 were positive for both viruses. Twenty-four of 27 samples were positive for either BSBMV or BSBV. Polymyxa betae cystosori were observed in all roots tested. The reactions on indicator plants and western blot results agreed with the ELISA tests. In Table 4, those BSBV samples
shown as "positive(?)" were samples in which only mechanical inoculations were positive for BSBV, and Western blots were inconclusive. Only two fields were infested with BNYVV, and one of these was a positive control from a field which had been previously diagnosed with rhizomania.

Table 4. Virus Incidence in Soil Samples: Eastern Slopes Decline $1988^{\text {a }}$			
Field ID	BNYVV	BSBMV	BSBV
Meisner (1-25-55)	negative	positive	negative
Maser(25-22-54)	negative	positive	positive
R. Hoff	negative	negative	positive
Hoff N1/2 (12-23-56)	negative	positive	positive
Maiser	negative	negative	positive
Green	negative	positive	positive
Meisner (27-21-55)	negative	positive	negative
Klien (35-23-55)	negative	positive	negative
Ross (18-21-56)	negative	positive	positive (?)
Schlager (29-22-53)	negative	positive	positive (?)
Green (6-25-47)	negative	positive	negative
Weglin (18-21-55)	negative	positive	positive (?)
Kaufman (7-21-56)	negative	positive	negative
Hodge (20-22-53)	negative	negative	positive (?)
Ross (18-21-55)	negative	positive	positive
Green	negative	positive	negative
BBAlliance	negative	positive	negative
Hodge (20-22-53)	negative	negative	negative
M. Klien (35-23-55)	negative	positive	negative
R. Hoff 12-23-56)	negative	positive	negative
DS (18-22-57)	negative	negative	negative
Keener (22-23-55)	negative	negative	negative
Richey\#1	negative	positive	positive
Rich Neb\#1	negative	positive	positive
Average\#1	positive	negative	positive
D\&C\#1	positive	negative	positive
Chalk\#1	negative	negative	positive
Salinas soil	positive	negative	negative
sterile sand	negative	negative	negative

${ }^{2}$ Virus identification was based on mechanical inoculation of indicator plants, ELISA, Western blot assays. Local lesions obtained from indicator plants were retested to confirm the original serological assay.
(?) indicates BSBV positive samples based only on characteristic reactions on indicator plants.
All samples were infested with Polymyxa betae in the roots.

Conclusions:
Two problems were observed in the soil samples submitted for analysis in 1998. First, there was an obvious problem in the germination of the varieties in most soils tested. In addition, beet seedlings showed symptoms of yellowing and distortion which may be attributed to extremely low levels of residual herbicide. However, no definitive test is recommended for the low levels which may exist. Since growers have apparently not complained of poor stand, it may be that at the levels planted, the problems we observed may not be responsible for the decline in field production.

The other problem detected in these soil samples is a high incidence of BSBMV and BSBV in affected fields. Eighty-nine per cent (24/27) of the affected fields were infested with either BSBMV, BSBV, or both. Little is known at this time about the effects of these viruses on sugarbeet production in the United States. Small scale greenhouse trials in our greenhouses indicate that BSBMV significantly reduces growth of beets when compared to non-inoculated beets. It is likely that soils infested with either or both of these viruse would be less productive.

Future studies should repeat the testing that was accomplished in the first year, but should extend testing to additional fields. The goal should be to evaluate varieties for resistance to BSBMV and BSBV with fumigated replicate test strips as negative controls. As we identify specific fields that are infested with these viruses we can be assured of locations for test plots. This will allow the evaluation of the actual effect these viruses have on sugarbeet production. Previous studies in our laboratory have shown that BSBMV is widespread throughout the midwestern United States, and probably originated in this country. We also have shown that diversity exists among these virus isolated depending on their origin. Preliminary studies in our laboratory show that resistance to rhizomania does not confer resistance to BSBMV isolates. Thus, breeding programs may have yet another challenge for optimum virus resistance and sugarbeet production.

SUGAR BEET RESEARCH

1998 REPORT

Section B

U.S. Department of Agriculture, Agricultural Research Service Northern Plains Area, (USDA-ARS-NPA)
Crops Research Laboratory, Sugar Beet Research Unit 1701 Centre Ave.; Fort Collins, CO. 80526-2083
Phone: (970) 498-4204
Fax: (970) 482-2909
Email: Ipanella@lamar.colostate.edu Web access: http://www.crl.ars.usda.gov/
Dr. Lee Panella, Geneticist \& Acting Research Leader Dr. Susan S. Martin, Plant Physiologist Plant Pathologist (currently being recruited)

Cooperation:

Colorado Agricultural Experiment Station

Much of this research was supported in part by funds provided through the
Beet Sugar Development Foundation
(Projects 440, 441, 443, 903, and 904)

CONTENTS

PUBLICATIONS
Abstracts of Papers Presented B7
EVALUATION OF CONTRIBUTED LINES FOR RESISTANCE TO RHIZOCTONLA SOLANI, A CAUSAL FUNGUS OF SUGAR BEET ROOT ROT. (BSDF Project 903) B9
EVALUATION OF CONTRIBUTED LINES FOR RESISTANCE TO CERCOSPORA BETICOLA, CAUSAL FUNGUS OF CERCOSPORA LEAF SPOT (BSDF Project 904) B1 2
RHIZOCTONIA ROOT ROT RESEARCH AND DEVELOPMENT OF GENETIC RESISTANCE IN SUGAR BEET (BSDF Project 440) B15
CERCOSPORA LEAF SPOT RESEARCH AND BREEDING FOR CERCOSPORA AND CURLY TOP RESISTANCE (BSDF Project 441) B21
PRE-BREEDING: THE INTROGRESSION OF NEW SOURCES OF CERCOSPORA LEAF SPOT RESISTANCE FROM BETA VULGARIS SPP. MARITIMA AND OTHER EXOTIC SOURCES INTO SUGAR BEET-TYPE POPULATIONS. (BSDF Project 443) B33

USDA-ARS-NPA Sugar Beet Research Unit's Mission Statement

Utilize distinctive site environmental and disease-free characteristics and specifically developed team expertise to: develop new knowledge and adapt biotechnologies to modify host-pathogen relations that affect disease resistance, pathogenesis, and epidemiology in sugar beet and other plant species pertinent to sugar beet cultivation; discover new information and techniques to identify and produce genotypes exhibiting superior disease and stress tolerance and agronomic qualities; and provide new knowledge that improves production efficiency and biochemical processing characteristics of sugar beet.

USDA-ARS -NPA COLORADO-WYOMING RESEARCH COUNCIL

The Sugar Beet Research Unit is a part of the Colorado-Wyoming (CO-WY)Research Council. This Council was chartered to promote and coordinate cooperative research activities among CO-WY Council research units; and facilitate communication and interaction with the Northern Plains Director, and among research programs and units and with customers locally, regionally, nationally and internationally. The five research units listed below publish an annual compilation of research reports. Many of the units are considering or have placed these reports on individual home pages which can be accessed through the NPA home page at www.npa.ars.usda.gov.

Rangeland Resource Research Unit (RRRU) - Cheyenne, WY, Fort Collins, CO \& Nunn, CO MISSION STATEMENT: The mission of the Rangelands Resources Research Unit is to develop an understanding of the interrelationships of the basic resources that comprise rangeland ecosystems. Research is directed toward the development of science and technology that contributes to enhanced forage and livestock production and sustainable, productive rangelands in the Central Great Plains.

Central Plains Resources Management Research Unit (CPRMRU)- Akron CO.

MISSION STATEMENT: To enhance the economic and environmental well-being of agriculture by development of integrated cropping systems and technologies for maximum utilization of soil and water resources. Emphasis is on efficient use of plant nutrients, pesticides, and water and soil conservation/preservation.

Great Plains Systems Research Unit (GPSRU) - Fort Collins, CO.

MISSION STATEMENT: Help develop and implement sustainable and adaptive agricultural systems by: (1) synthesizing, quantifying, evaluating, and enhancing knowledge of processes; (2) developing integrated models of agricultural systems; (3) providing technology packages to agricultural communities and action agencies.

Soil-Plant-Nutrient Research Unit (SPNRU) - Fort Collins, CO.

MISSION STATEMENT: To develop and evaluate new knowledge required to efficiently manage soil, fertilizer and plant nutrients (emphasis on nitrogen) to achieve optimum crop yields, maximize farm profitability, maintain environmental quality and sustain long-term productivity.

Water Management Resources Unit (WMRU) - Fort Collins, CO.

MISSION STATEMENT: Research emphasis is to integrate applied and basic principles to develop improved water, chemical, and alternative weed management systems and irrigation system designs. Improvements are directed toward sustainable, environmentally sound and efficient systems based on soil, water, fertility, energy, and weed ecology principles. This encompasses understanding physical and biological phenomena and developing computer simulation models and precision farming systems to transfer new technologies to producers, consultants, action agencies, industry, and scientists.

For a copy of the Colorado-Wyoming (CO-WY)Research Council Annual Report or information on any of these programs, please note the following contacts:

Jack Morgan
Rangeland Resources Research Unit (RRRU)
Crops Research Laboratory
1701 Centre Avenue
Fort Collins, CO 80526-2083
Phone: 970 498-4216
FAX: 970 482-2909
E-Mail: morgan@lamar.colostate.edu
Randy L. Anderson, Research Leader (CPRMRU)
Central Great Plains Research Station
40335 County Road GG
P.O. Box 400
Akron, CO. 80720
TEL: (970) 345-2259
FAX: (970) 345-2088
Email: rlander@lamar.colostate.edu
Lajapat R. Ahuja, Research Leader (GPSRU)
Federal Bldg 301 S. Howes, Room 353
P. O. Box E
Fort Collins, CO 80522
TEL: (970) 490-8300
FAX: (970) 490-8310
Email: ahuja@gpsr.colostate.edu

Ronald F. Follet, Research Leader (SPNRU)
Federal Bldg 301 S. Howes, Room 407
Fort Collins, CO 80522
TEL: (970) 490-8200
FAX: (970) 490-8213
Email: rfollet@lamar.colostate.edu

Dale F. Heerman, Research Leader (WMRU)
Agricultural Engineering Research center
Colorado State University
Fort Collins, CO 80523
TEL: (970) 491-8511
FAX: (970) 491-8247
Email: dale@lily.aerc.colostate.edu

PUBLICATIONS \& ABSTRACTS

1. Panella, L. Evaluation of sugar beet germplasms for resistance to curly top virus, 1997. Biological and Cultural Test for Control of Plant Diseases. Am. Phytopathol. Soc Vol.13:34. 1998.
2. Panella, L. Screening of Beta PIs from the USDA-ARS National Plant Germplasm System (NPGS) for resistance to curly top virus, 1997. Biological and Cultural Test for Control of Plant Diseases. Am. Phytopathol. Soc. Vol.13:149. 1998.
3. Panella, L. Screening and utilizing Beta genetic resources with resistance to Rhizoctonia root rot and Cercospora leaf spot in a sugar beet breeding program. pp 62-72. In: Frese, L., L. Panella, H. M. Srivastava, and W. Lange, editors. International Beta Genetic Resources Network. A report on the 4th International Beta Genetic Resources Workshop and World Beta Network Conference held at the Aegean Agricultural Research Institute, Izmir, Turkey, 28 February - 3 March, 1996. International Crop Network Series. 12., International Plant Genetic Resources Institute, Rome. 1998.
4. Panella, L. and E. G. Ruppel. Screening of Beta PIs from the USDA-ARS National Plant Germplasm System for resistance to Rhizoctonia root rot, 1997. Biological and Cultural Test for Control of Plant Diseases. Am. Phytopathol. Soc. Vol.13:151. 1998.
5. Panella, L., E. G. Ruppel, I. Liović, \& A. Kristek. Screening of Beta PIs from the NPGS for resistance to Cercospora leaf spot at multiple locations, 1997 Biological and Cultural Test for Control of Plant Diseases. Am. Phytopathol. Soc. Vol.13:150. 1998.
6. Panella, L. The Sugarbeet Crop Germplasm Committee: 15 Years of Public and Private Research Partnership. Sugar J. 61(6):10. November, 1998. (Popular Press)
7. Panella, L. Registration of FC709-2 AND FC727 sugarbeet germplasms resistant to Rhizoctonia root rot and Cercospora leaf spot. Crop Sci.:39(1) 1999.
8. Panella, L., E. G. Ruppel, I. Liović, \& A. Kristek. Varied response of Beta vulgaris L. Plant Introductions to Cercospora beticola in different environments. Proceedings (Agricultural) from the $30^{\text {th }}$ Biennial Meeting of the American Society of Sugar Beet Technologists: in press.
9. Panella, L., A.L. Hodgdon, and D. Stout. Evaluation and Utilization of the USDA-ARS National Plant Germplasm System's (NPGS) Beta Collection. Agr. Abstr. p. 162. (ASA-CSSA-SSSA Annual Meeting, 18-22 Oct, Baltimore, MD). 1998. (abstract)
10. Panella, Lee, Ivica Liović, Earl G. Ruppel and Andrija Kristek. Varied response of Beta vulgaris L. Plant Introductions to Cercospora beticola in different environments. $30^{\text {th }}$ Biennial Meeting of the American Society of Sugar Beet Technologists, Orlando, FL February 10-13, 1999. (abstract).
11. Weiland, John J., Garry A. Smith, and Lee Panella. Greenhouse assay for the evaluation of sugarbeet resistance to Rhizoctonia root rot. $30^{\text {th }}$ Biennial Meeting of the American Society of Sugar Beet Technologists, Orlando, FL February 10-13, 1999. (abstract).

EVALUATION OF CONTRIBUTED LINES FOR RESISTANCE TO RHIZOCTONIA SOLANI, A CAUSAL FUNGUS OF SUGAR BEET ROOT ROT. (BSDF Project 903)

L. Panella

Annually, for over thirty years, the breeding program in Fort Collins has created an artificial epiphytotic through inoculation with Rhizoctonia solani to evaluate and select for resistance to root rot caused by this pathogen. We have been pleased to participate and lead this cooperative research project between the ARS, Colorado State University, and the BSDF. The project primarily involved field studies conducted on 35 acres of leased land near Windsor, CO. Randomized, complete-block designs with five replicates were used to evaluate Fort Collins ARS breeding germplasm. Rhizoctonia-resistant line FC 703 and highly susceptible $\mathrm{FC} 901 / \mathrm{C} 817 / / 413$ were included as internal controls, along with highly resistant FC705-1.

One-row plots, planted May 21st, were 12 feet long with 22 inches between rows and 8 -10 inches within-row spacing. Inoculation with dry, ground, barley-grain inoculum of Rhizoctonia solani isolate R-9 was performed on July 20; immediately after inoculation, a cultivation was performed so as to throw soil into the beet crowns. The field was sprayed twice with Betamix Progress, Upbeet, and Stinger (May 27 and June 5) to control weeds. The field was thinned by hand and irrigated as necessary - it was a dry summer (see weather data in Figure 1). Any additional weed control was by hand hoeing and the plots were thinned to 8 in spacing between beets starting about 6 wk after planting.

Table 1. 1998 Rhizoctonia Root Rot Nursery, Fort Collins, CO. The Graph in Figure 1 summarizes the 1998 weather data for our Rhizoctonia Root Rot Nursery in 1998. The table below presents summary data of the entire nursery. The experiment mean, the mean of the susceptible check, the mean of the resistant check, and the mean of the highly resistant check are given for each of the experiments in the nursery. LSD is at the $t=0.05$ level.

Exp.	Disease Index					Percent Healthy (classes 0 \& 1)					Percent in Classes 0 to 3				
	Mean	Sus.	Res.	H Res.	LSD	Mean	Sus.	Res.	H Res.	LSD	Mean	Sus.	Res.	H Res.	LSD
1R	6.01	6.04	4.34	4.44	0.76	1.01	0.00	5.31	8.30	7.0	4.66	0.00	37.33	29.14	11.5
2R	5.81	5.33	3.47	4.50	1.12	5.74	0.00	34.50	0.00	11.0	12.20	0.00	41.83	29.36	17.9
3R	4.78	5.55	2.76	3.38	1.27	8.69	0.00	36.00	33.75	16.7	21.82	9.00	60.27	45.00	25.4
7R	5.51	5.75	4.75	4.68	1.09	3.84	0.00	0.00	13.28	10.6	15.92	9.00	33.75	. 96	17.9
8R	5.21	5.69	1.50	4.81	0.93	3.25	0.00	53.30	8.30	11.7	10.71	0.00	90.00	24.16	14.9
Avg.	5.47	5.67	3.36	4.36		4.51	0.00	25.82	12.73		13.06	3.60	52.64	29.72	

[^5]Beets were harvested August 19 through 21. Each root was rated for rot on a scale of 0 to 7 (dead) as previously described. ANOVAs were performed on disease indices (DIs), percent healthy roots (classes

0 and 1 combined), and percentage of roots in classes 0 thru 3 (those most likely to be harvested and taken to the factory). Percentages were transformed to arcsin-square roots to normalize the data for analyses ("APHLTHY" and "AP 0-3" in the accompanying table). LSDs ($\mathrm{P}=0.05$) are provided for comparing DIs and arcsin transformations among entries and with our internal checks.

The 1998 Rhizoctonia epidemic started strong and progressed quickly, becoming severe by mid August. We had to irrigate the beets up and had a period of cold temperature with just a little rain in the week after planting (see accompanying summary of weather data in Figure 1). Therefore, stands were poor, and, in some instances, we lost plots to lack of germination and crusting. Differences in DIs among entries in all tests were highly significant ($P<0.0001$). Mean DIs across all tests for highly resistant FC705-1, resistant FC703, and highly susceptible FC901 controls were 4.4, 3.4, and 5.7, respectively (see Table 1). Percentages of healthy roots were $12.7,25.8$, and 0.0 for these controls. Percentages of roots in disease classes 0 thru 3 were 29.72, 56.6, and 3.6, respectively. The highest and lowest DIs for contributor lines were 7.0 and 3.5 , respectively.
USDA-ARS 1998 Rhizoctonia Disease Nursery, Windsor, CO.

Figure 1. Weather Data was received from Colorado's CoAgMet system, which is electronically reported, and can be accessed off of the Colorado Climate Center Webstite which can be reached at the following URL - http://ulysses.atmos.colostate.edu/ The Lucerne weather station is located one quarter mile southwest of Lucerne, Colorado (Lat $=40.4753$, Lon $=104.7075$, elevation $=4750$). Our Windsor plots are located about 10 miles west of Lucerne (about Latitude $=40.2730$, Longitude $=104.5500$, elevation $=4800$). The Rhizoctonia root rot nursery was planted on day 141 (May 21), inoculated on day 201 (July 20) and evaluated on days 231 through 233 (August 19-21).

EVALUATION OF CONTRIBUTED LINES FOR RESISTANCE TO CERCOSPORA BETICOLA, CAUSAL FUNGUS OF CERCOSPORA LEAF SPOT (BSDF Project 904)

L. Panella

The breeding program in Fort Collins has created an artificial epiphytotic through inoculation with Cercospora beticola annually for over forty years to evaluate and select for resistance to leaf spot caused by this pathogen. We have been pleased to participate and lead this cooperative research project between the ARS, Colorado State University, and the BSDF. The project primarily involved field studies conducted on 35 acres of leased land near Windsor, CO.

Randomized complete-block designs, with three replications were used to evaluate breeding germplasm. Internal controls included a highly susceptible synthetic and a resistant check (FC 504/ $502-2 / / \mathrm{SP} 6322-0$). The nursery was planted on April $29^{\text {th }}$. Fertilization was 75% of the soil test recommendation to minimize leaf growth, which can interfere with visual evaluations. Two-row plots were 12 feet long, with 22 -inch row spacing and an 8 - to 10 -inch within-row plant spacing. Inoculation was performed on July $6^{\text {th }}$ and again on July $13^{\text {th }}$. Evaluations were made on August 25, September 3, and 8, with the peak of the epidemic occurring on or about the last date. The field was sprayed twice with Betamix Progress, Upbeet, and Stinger (May 27 and June 5) to control weeds. The field was thinned by hand and irrigated as necessary - it was a dry summer (see summary of weather data Figure 2).

Table 2. 1998 Cercospora Leaf Spot Nursery, Fort Collins, CO. The Graph in Figure 2 summarizes the 1998 weather data for our Cercospora Leaf Spot Nursery int 1998. The table below presents summary data of the entire nursery. The experiment mean, the mean of the susceptible check, and the mean of the resistant check are given for each of the experiments in the nursery, for each evaluation date. The highest mean rating given on September $8^{\text {th }}$ was an 8.0 and the lowest a 2.50 .

| | August 25
 Disease Index | | | | September 3
 Disease | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Index | | | | | | |

${ }^{1}$ Cercospora Susceptible Check - SP351069-0
${ }^{2}$ Cercospora Resistant Check - FC 504CMS/FC 502-2//SP6322-0
${ }^{3}$ There were only two replications of Experiment 6A

The 1998 leaf spot epidemic started strong and progressed rather slowly, but eventually became more severe by late August. We had a period between of about one month right after inoculation, in which we had relatively high evening temperatures (see accompanying summary of weather data), which helped disease development. An analysis of variance (PROC ANOVA - SAS)
on the disease indices (visual evaluation scores) determined that there were significant differences among entries $(\mathrm{P}=0.05)$ on all three dates. At our third evaluation, means of the resistant and susceptible internal controls were 3.2 and 5.3 (scale of $0-10$), respectively, across the nursery. In 1997 (September 8), these means were 3.7 and 7.3, respectively (see Table 2). Means of contributor lines on September 8 ranged from 2.5-8.0, compared with 4.3-8.3 in the severe epidemic of 1997.
USDA-ARS 1998 Cercospora Disease Nursery, Windsor, CO.

[^6]
RHIZOCTONIA ROOT ROT RESISTANCE AND DEVELOPMENT OF GENETIC RESISTANCE IN SUGAR BEET - BSDF Project 440

L. Panella

This facet of the USDA-ARS Fort Collin's sugar beet breeding program has as its goals: 1) the understanding the genetics of the Rhizoctonia solani/sugar beet interaction in order to better facilitate development of germplasm with high levels of resistance to Rhizoctonia and other sugar beet diseases, and 2) to provide the knowledge to better manage this disease in sugar beet production areas. It is an integrated research program with greenhouse, laboratory, and field components. Genetic information developed previously in our research is used to execute additional cycles of pathogen inoculation, plant selection, and recombination among germplasms that we have in our cyclic improvement program. Germplasms in various stages of improvement are evaluated for resistance in inoculated field tests. Results of these tests form the basis of decisions about specific germplasm, i.e., retain, shelve, discard, recombine, release, etc. Germplasms likely to be useful for variety improvement are identified and released for use by other sugar beet breeders.

1998 Field Research on Rhizoctonia Root Rot of Sugar Beet.

The breeding program in Fort Collins has created annually an artificial epiphytotic through inoculation with Rhizoctonia solani for over thirty years to evaluate and select for resistance to root rot caused by this pathogen. We have been pleased to participate and lead this cooperative research project between the ARS, Colorado State University, and the BSDF. The project primarily involved field studies conducted on 35 acres of leased land near Windsor, CO. Randomized, complete-block designs with five replicates were used to evaluate Fort Collins ARS breeding germplasm. Rhizoctonia-resistant line FC703 and highly susceptible FC901/C817//413 were included as internal controls, along with highly resistant FC705-1.

One-row plots, planted May 21 st, were 14 feet long with 22 inches between rows and 8-10 inches within-row spacing. Inoculation with dry, ground, barley-grain inoculum of Rhizoctonia solani isolate R-9 was performed on July 20; immediately after inoculation, a cultivation was performed so as to throw soil into the beet crowns. The field was sprayed twice with Betamix Progress, Upbeet, and Stinger (May 27 and June 5) to control weeds. The field was thinned by hand and irrigated as necessary - it was a dry summer (Figure 1). Any additional weed control was by hand hoeing and the plots were thinned to 8 in spacing between beets starting about 6 wk after planting.

Beets were harvested August 19 through 21. Each root was rated for rot on a scale of 0 to 7 (dead) as previously described. ANOVAs were performed on disease indices (DIs), percent healthy roots (classes 0 and 1 combined), and percentage of roots in classes 0 thru 3 (those most likely to be harvested and taken to the factory). Percentages were transformed to arcsin-square roots to normalize the data for analyses ("APHLTHY" and "AP 0-3" in the accompanying table). Both percentages and arcsin transformations are given in Tables $3 \& 4$. LSDs $(P=0.05)$ are provided for comparing DIs and arcsin transformations among entries and with our internal checks.

The 1998 Rhizoctonia epidemic started strong and progressed quickly, becoming severe by mid August. We had to irrigate the beets up and had a period of cold temperature with just a little rain in the week after planting (see accompanying summary of weather data in Figure 1). Therefore, stands were poor, and, in some instances, we lost plots to lack of germination and crusting.

Abstract

Allotment of Fort Collins "FC" numbers (3-digit numbers) "FC" numbers are "convenience" numbers for "seed releases" or purposes where a permanent line designation is needed - i.e. a number that does not change from generation to generation where little or no selection pressure is applied. Initially, an "FC" no. was written thus "FC 501" [now FC727], "FC 502 CMS" [now FC715CMS], etc. Sublines (from selfing) were designated thus, "FC 502/2" [now FC709-2], "FC502/3" [now FC502-3], etc. The same applys when the line is substantially changed by selection without selfing.

Below 500	Originally LeRoy Powers - now parental lines and special genetic stocks.
500 's	Leaf Spot Resistant (LSR), Type-O lines \& male steriles [CMS]
600 's	LSR-Curly Top Resistant (CTR), type-O lines \& male steriles [CMS]
700 's	Rhizoctonia Resistant
800 's	LSR-CTR-Rhizoctonia resistant
900 's	Pollinators, LSR-CTR type

Differences in DIs among entries in all tests were highly significant ($P<0.0001$). Mean DIs across all tests for highly resistant FC705-1, resistant FC703, and highly susceptible FC901 controls were $4.4,3.4$, and 5.7 , respectively. Percentages of healthy roots were $12.7,25.8$, and 0.0 for these controls. Percentages of roots in disease classes 0 thru 3 were $29.72,56.6$, and 3.6 , respectively. The highest and lowest DIs for contributor lines were 7.0 and 3.5 , respectively.

Transforming Rhizoctonia-Resistant Populations to Germplasm with Multiple Disease Resistance

Root rot and leaf spot are two serious diseases of sugar beets caused by fungi (Rhizoctonia solani and Cercospora beticola, respectively). The diseases caused by these fungi may produce a severe reduction of yield in many sugar beet production areas. Cultural control measures are not adequate by themselves, and often no chemicals are registered for control of these diseases, or chemical control is expensive or environmentally unsafe. Increased levels of genetic resistance in sugar beet varieties are needed to minimize growers' losses from these diseases. In a hybrid crop like sugar beets, it is preferable that all of the parents contain some level of resistance to diseases prevalent in the area in which the hybrid is to be grown. Multiple disease resistance is a difficult goal in a crop improvement program, especially when working with an outcrossing species. In alternating generations of selection, some of the progress made in resistance to one disease is lost while selecting for resistance to other diseases.

One way of solving the problem of selecting for multiple disease resistance is the use of progeny testing. By testing the progeny of individual mother roots, plants with multiple disease resistance can be identified and used as parents of the next generation. The most efficient use of progeny testing is when the genotype of both parents is controlled, and the most effective way to do
this is through self-pollination. In sugar beet, there is a dominant, self-fertility gene that permits selfpollination. Used in conjunction with genetic male sterility, to insure cross pollination, a system of selfed-family progeny testing can be utilized.

This effort is based on the Rhizoctonia-resistant materials from the programs of John Gaskill and Richard Hecker, and disease resistant germplasm from other sources to produce germplasm highly resistant to Rhizoctonia solani. This base of Rhizoctonia-resistant germplasm is being combined with material from the USDA-ARS breeding programs at Salinas and Fargo, as well as with sources for higher yield and sucrose. The Salinas material has the self-fertility allele, is segregating for genetic male sterility, and also contains a broad spectrum of resistance to diseases of importance in California as well as other sugar beet production areas (including rhizomania, powdery mildew, virus yellows, and curly top virus). Fargo sources of root maggot and Cercospora leaf spot resistance are also being utilized.

A number of source populations are being developed. The germplasm, FC712(4X) is being released in 1999. This germplasms was developed in our research project that has been contributed to, in kind, by the Beet Sugar Development Foundation. The soon to be released tetraploid pollinator germplasm combines excellent Rhizoctonia-root-rot resistance with a good level of leaf spot resistance. Germplasms whose development was begun under the breeding program of Dr. Richard Hecker are still being evaluated in the field. These germplasms and other germplasms from the Fort Collins program were field-tested in summer of 1998 for resistance to R. solani (Tables 3-4), C. beticola (Tables 5-6), and the curly top virus (Table 7). More germplasms that were selected for increased resistance to Rhizoctonia-root-rot in 1996, and tested in 1997, will be tested again in 1998; and the most promising of these will be released in the future.

There currently are four major groups of Rhizoctonia-resistant germplasms currently under development.

1. Germplasms developed in Dr. Hecker's breeding program for resistance to Rhizoctonia root rot and Cercospora leaf spot are being field tested and selected in the Rhizoctonia root rot nursery at Fort Collins (also in the Cercospora leaf spot and curly top nurseries).
2. Rhizoctonia-resistant monogerm polycross base population developed by a cross between FC 708 and two Salinas germplasms, 2890 and 2859.
A. 2890 (sp) 0790 mm aa $\times 1890$ (Salinas); is seed from $a a$ plants open pollinated by A- plants. $0790=$ population- 790 cycle 5 synthetic by S_{1} progeny, M.S. mm, O-type, good combining ability, adapted to California, S^{f}, $\quad 1890=\mathrm{BC}$ population to population 790 to get Rz equivalent, remains variable for $\mathrm{M}-: \mathrm{mm}, \mathrm{Rz}-: \mathrm{rzzz}$, etc.
B. $2859 \mathrm{~m}(\mathrm{sp})=1859,1859 \mathrm{R}$ aa \times A- (Salinas); Released in 1992 as C859. S^{f}, similar to 2890, but should have higher curly top resistance (CTR). Segregates and variable for M-:mm, Rz-:rzrz, A-: aa, predominant background is lines like C563, which is widely used in western USA as source of CTR, mm, O-type.
3. Rhizoctonia root rot resistance multigerm base population developed by a cross between $\mathrm{FC} 709-2$ and a Salinas germplasms, 2915.
A. 2915 (sp) RZM 1915-\#m 1913-\# aa x A (Salinas); Seed harvested from aa (ms) plants openpollinated by A- (fertile) plants. This population will segregate for $A-: a a, R z-: r z r z, s^{s} s^{s}: s^{\mathrm{f}}$-,
($>^{1} / 2 \mathrm{~s}^{\mathrm{s}}$), R-:ाr, It will be multigerm, have moderate to good tolerance to virus yellows, curly top, bolting, Erwinia; variable for reaction to powdery mildew, production traits. Individual plants will be either As or aa. Background of population is mostly from OP, MM lines such as C46, C37.
4. Combination Rhizoctonia root rot and Cercospora leaf spot resistant multigerm pollinator population from FC907 (out of Fargo) and FC709-2.

Progress in 1998

0.1. Selections have been made in these populations and they have been crossed with other germplasm in a continuing Rhizoctonia-resistance breeding effort. Two multigerm pollinators (FC709-2 and FC727) with Rhizoctonia and Cercospora resistance were released this winter and FC712 4(X) will be this summer. It has excellent resistance to Rhizoctonia root rot and good Cercospora resistance. Monogerm O-type lines and CMS equivalents, selected in the 1996 Rhizoctonia nursery were tested this year and will be crossed this winter for combining ability tests next season.
0.2. S_{1} families selected for curly top resistance from this monogerm base populations were selected in the Rhizoctonia nursery last year. This germplasm has been harvested increased in the Greenhouse at Fort Collins. This seed was planted in the mother root nursery at Fort Collins for increase and it will be tested in Salinas next year to see if the Holly gene for Rhizomania resistance is still segregating in the population. Seed also will be planted in the Rhizoctonia nursery next year and again selected for resistance.
0.3. Individual selfed \& half-sib families were harvested and progeny tested in the Rhizoctonia and curly top nursery in 1998 and Rhizoctonia nursery this year. Selections were made from the Rhizoctonia nursery and remnant seed is available for the top performers in the curly top nursery. These selections will be recombined and tested next year and the following year.
0.4. Seed, increase from Rhizoctonia-resistant selected roots of FC907 ((FC701 x FC607)BC ${ }_{4}$), was tested in the Rhizoctonia and Cercospora nurseries next year. Selections made in a (FC709-2 $\mathrm{xFC907}) \mathrm{F}_{2}$ population were increased in the greenhouse last winter and will be tested in the Rhizoctonia and Cercospora nurseries this year.

The collaborative project with the Plant Genetic Resources Conservation Unit at Griffin, GA has been completed. The results are being prepared for publication. Meanwhile, we are looking for short, unique sequences within the ITS regions that can be used to "fingerprint" isolates of R. solani that are pathogenic on sugar beet.

Future laboratory research will use the information gained from studying the pathogen to begin to look at the sugar beet reaction to the Rhizoctonia pathogen. Biocontrol work will resume once a new Research Plant Pathologist is on board.
Table 3. Experiment 9R, 1998. Rhizoctonia Resistance Evaluation of USDA-ARS Breeding Lines from Fargo (Smith and Campbell) and East Lansing (Saunders \& Halloin)

Seed Source	Description	DI ${ }^{1}$		$\% 0-3{ }^{-3}$	Z\% ${ }^{4}$ Hithy	Z\% 0-3
	$L^{\text {LS }}$	1.1			ns	24.2
921024	FC709-2 - Fort Collins release (+2 cycles Rhizoc \& 1 cycle sucrose)	2.6	4	96	7	85
751080 H	FC703-Resistant Check	3.2	5	77	7	67
881032H	FC712-Fort Collins Release	3.4	3	77	4	65
951017	FC727-Fort Collins release (FC703/(AJ-ZZ \& Aula Dei \& 67-436), MM)	3.5	8	62	11	56
831083	FC705/1 - Highly Resistant Check	3.8	0	55	0	50
7	B K 736 - John Halloin - East Lansing	4.3	0	22	0	22
98J26-052	East Lansing - Joe Saunders	4.4	3	31	5	31
3	ACH 1353-John Halloin - East Lansing	4.4	9	32	10	30
4	HMA 2733 - John Halloin - East Lansing	4.5	3	27	4	31
8	SX 1217 - John Halloin - East Lansing	4.8	0	25	0	28
6	HMA RH3 - John Halloin - East Lansing	4.9	5	20	7	26
5	HMA 2736 - John Halloin - East Lansing	5.2	2	14	4	19
96N0009	Fargo - Low Amino-n (FC504cms/FC502-2/605/3) high sucrose LSR multigerm pop.	5.3	0	21	0	24
96N0012	Fargo - Low Sodium selection	5.5	0	5	0	7
9	ACH 308 - John Halloin - East Lansing	5.6	1	15	4	17
97N0132	F1015 - Fargo release	5.8	7	16	7	18
10	B 5931 - John Halloin - East Lansing	5.8	0	6	0	9
931017	(FC901/C817)//413-Susceptible Check	5.8	0	9	0	14
11	HMA E17-John Halloin - East Lansing	5.8	0	7	0	11
96N0011	Fargo - Low Potassium selection	5.8	4	8	5	8
12	US H2O-John Halloin - East Lansing	5.9	0	6	0	9
96N0051	F1016 - Fargo release	6.2	0	2	0	4

[^7]Table 4. Experiment 4R, 1998. Rhizoctonia Resistance Evaluation of USDA-ARS Breeding Lines from Fort Collins CO, (Lee Panella)

Seed Source	Description	DI'	\% Hith	0 -	Z\% ${ }^{4}$ HIt	Z\% 0-3
	LSD ${ }^{5}$					
971017	FC 712 colchicine doubled - FC712(4X)	1.7	33	100	33	90
96RR	Joe Saunders - East Lansing	2.0	42	86	40	73
881032 H	Fort Collins Release - FC712	2.1	44	89	39	76
971018	FC710 colchicine doubled - FC710(4X)	2.2	45	78	40	70
961014	FC702/LSR-CTR - FC724	2.3	47	83	41	71
891033	FC710	2.5	27	76	30	64
961015	C718/(C718/FC708) - FC720	2.5	37	67	38	56
951017	Fort Collins release (FC703/(AJ-ZZ \& Aula Dei \& 67-436), MM) - FC727	2.5	28	75	29	64
921024	Fort Collins release (+2 cycles Rhizoc \& 1 cycle sucrose) - FC709-2	2.6	33	83	29	72
831083	Highly Resistant Check - FC705-1	2.7	33	66	31	58
961012HO	FC712/Mono-Hy A4	3.1	16	76	18	65
921019	FC712/A4, 3 cycles Rhizoc, MM - FC729	3.2	16	52	17	46
961012HO1	FC712/Mono-Hy A4	3.7	11	51	12	45
751080 H	Resistant Check - FC703	3.9	12	39	13	38
951016 HO	EL44/FC708 mm - FC723	4.2	11	41	12	36
951016 HO 1	EL44/FC708 CMS - FC723CMS	4.2	4	24	5	26
961010 HO 1	C718/FC708-FC722CMS	4.2	0	30	0	29
961021		4.3	7	11	7	12
981009H	(907/709-2)F2-Sel Rhzc	4.4	9	18	12	19
961010 HO	C718/FC708-FC722	4.5	0	40	0	36
SR87	SR87-Joe Saunders - East Lansing	4.5	2	21	4	23
961011HO1	FC607/FC708	4.6	0	15	0	19
931017	Susceptible Check - (FC901/C817)//413	5.5	0	6	0	9
971020	FC607/FC701 BC4 - FC907-1	5.5	2	6	4	11
961011HO	FC607/FC708	5.6	0	13	0	11
97J09-00	Joe Saunders - East Lansing	6.1	0	3	0	4

[^8]
CERCOSPORA LEAF SPOT RESEARCH AND BREEDING FOR CERCOSPORA AND CURLY TOP RESISTANCE - (BSDF Project 441)

L. Panella

This element of the breeding program at Fort Collins is devoted to the development of germplasm with resistance to more than one sugar beet disease and improved agronomic characteristics. It is built on germplasm developed at Fort Collins over the last fifty years for combined resistance to Cercospora leaf spot and the curly top virus. This is an integrated breeding program with greenhouse and laboratory studies, and a field program based on testing in an artificial epiphytotic created in the unique Fort Collins environment. It involves close collaboration with the other USDA-ARS sugar beet programs in the U.S. and sugar beet seed industry customers. The major goals of this program are: 1) the development of sugar beet germplasm with resistance to more than one disease and excellent agronomic characteristics; 2) the improvement of breeding techniques, traditional and molecular, to develop this germplasm; and 3) an increased understanding of the sugar beet/pathogen interactions to improve management practices of these diseases in sugar beet production areas. Genetic information developed during this research will be used to execute additional cycles of pathogen inoculation, plant selection, and recombination among germplasms that we have in our leaf spot improvement program. Results of these tests will be the basis of decisions about specific germplasm, i.e., retain, discard, recombine, release, etc. Germplasms likely to be useful for variety improvement will be identified and released for use by other sugar beet breeders.

Increased resistance to Cercospora continues to be an extremely important goal. If the level of resistance available in most Cercospora-resistant experimental lines were present in commercial hybrids (along with good sugar and seed yield), the need for fungicides would be greatly reduced. That continued improvement in genetic resistance to this serious pathogen is still needed is evident by the occurrence of Cercospora strains that are resistant or increasingly tolerant to our most potent fungicides. Additionally, some of these fungicides may be removed from the market because of their perceived or real threat to the environment. In many areas where Cercospora leaf spot is a problem, the curly top virus also causes significant losses. And, there are some growing areas in which combined resistance to Cercospora leaf spot, Rhizomania, curly top, Rhizoctonia root rot, and other diseases are desirable. Germplasm is needed with combined resistance to these diseases, along with good combining ability for yield components.

1998 Field Research on Cercospora Leaf Spot of Sugar Beet

The breeding program in Fort Collins has created an artificial epiphytotic through inoculation with Cercospora beticola annually for over forty years to evaluate and select for resistance to leaf spot caused by this pathogen. We have been pleased to participate and lead this cooperative research project between the ARS, Colorado State University, and the BSDF. The project primarily involved field studies conducted on 35 acres of leased land near Windsor, CO.

Randomized complete-block designs, with three replications were used to evaluate breeding germplasm. Internal controls included a highly susceptible synthetic and a resistant check, FC(504 X 502/2) X SP6322-0. The nursery was planted on April 29 ${ }^{\text {th }}$. Fertilization was 75% of the soil test recommendation to minimize leaf growth, which can interfere with visual evaluations. Two-row plots were 12 feet long, with 22 -inch row spacing and an 8 - to 10 -inch within-row plant spacing.

Inoculation was performed on July $6^{\text {th }}$ and again on July $13^{\text {th }}$. Evaluations were made on August 25, September 3, and 8, with the peak of the epidemic occurring on or about the last date. The field was sprayed twice with Betamix Progress, Upbeet, and Stinger (May 27 and June 5) to control weeds. The field was thinned by hand and irrigated as necessary - it was a dry summer (see summary of weather data Figure 2).

The 1998 leaf spot epidemic started strong and progressed rather slowly, but eventually became more severe by late August. We had a period between of about one month right after inoculation, in which we had relatively high evening temperatures (see accompanying summary of weather data), which helped disease development. An analysis of variance (PROC ANOVA - SAS) on the disease indices (visual evaluation scores) determined that there were significant differences among entries ($\mathrm{P}=0.05$) on all three dates (Tables 5 \& 6). At our third evaluation, means of the resistant and susceptible internal controls were 3.2 and 5.3 (scale of 0-10), respectively, across the nursery. In 1997 (September 8), these means were 3.7 and 7.3 , respectively. Means of contributor lines on September 8 ranged from 2.5-8.0, compared with 4.3-8.3 in the severe epidemic of 1997.

Cercospora/Curly Top-Resistant Populations with Resistance to Multiple Sugar Beet Diseases and Superior Agronomic Characteristics

Advanced breeding lines or Cercospora-resistant germplasms from Fargo (11), Salinas (18), East Lansing (14), and Fort Collins (11) were evaluated in Experiment 3A at the ARS leaf spot nursery at Ft. Collins (Table 5). An additional thirty-two Fort Collins advanced breeding lines or released germplasms were evaluated for Cercospora leaf spot resistance (Table 6). Breeding lines and family progeny were also tested at the BSDF Nursery in Kimberly, ID (Table 7). FC907, a multigerm, leaf spot resistant germplasm, is being increased and should be released from Fargo this coming year. This is a cross between FC701 and FC607, which was backcrossed four times to the leaf spot resistant parent (FC607). It has been shown to have excellent Cercospora leaf spot resistance in the last three years of testing.

Cercospora Leaf Spot/Curly Top Resistant (LSR/CTR) Breeding Populations Currently under Development.

1. Cercospora leaf spot and curly top resistant monogerm base population from a polycross of FC607 and FC604 with two Salinas germplasms 2859 and 2890.
C. $2890(\mathrm{sp})=0790 \mathrm{~mm} a a \times 1890$ (Salinas); is seed from $a a$ plants open pollinated by Aplants. $0790=$ population- 790 cycle 5 synthetic by S_{1} progeny, aa, mm, O-type, good combining ability, adapted to California, $\mathrm{S}^{\mathrm{f}} .1890=\mathrm{BC}$ population to population 790 to get Rz equivalent, remains variable for $\mathrm{M}-\mathrm{mm}, \mathrm{Rz}-\mathrm{rzzz}$, etc.
D. $2859 \mathrm{~m}(\mathrm{sp})=1859,1859 \mathrm{R}$ aa \times A- (Salinas); Released in 1992 as C859. S^{f}, similar to 2890, but should have higher curly top resistance. Segregates and variable for M-:mm, Rz-:rzzz, A-: aa, predominant background is lines like C563.
2. Cercospora leaf spot and curly top resistant multigerm base population from a polycross of FC902 with two Salinas germplasms 278 and 4918.
A. 278 (Iso 83) $=$ RZM R078; R278 is Rz (segregates Rz---:rzzz) version of C46. It should be $\mathrm{S}^{\mathrm{s}} \mathrm{S}^{\mathrm{s}}, \mathrm{MM}$.
B. $4918(\mathrm{sp})=$ RZM 3918 aa X A-, 142 aa plants; This is an increase of released material C918. It should be Multigerm, over $75 \% \mathrm{~S}^{\mathrm{f}}$ and segregating for $\mathrm{A}-, \mathrm{R}-, \mathrm{Rz}-, \mathrm{VY}, \mathrm{CT}$, Erw, \& PM.
3. Cercospora leaf spot and curly top resistant multigerm, self-incompatible base population from a polycross of FC607x [SR87, MonoHy A4, MonoHy T6, \& MonoHy T7]
4. The multigerm pollinator, $\mathrm{FC} 907\left\{=([\mathrm{FC} 701 / 4 \times \mathrm{FC} 607] \times \mathrm{FC} 607) \mathrm{BC}_{4}\right\}$, developed in the Fargo program is being increased for release.
5. Seed from FC709-2 x FC907 was sent to Larry Campbell at Fargo to cross to Sugar beet root maggot resistant germplasm to develop a population that will produce pollinators with resistance to Rhizoctonia, Cercospora, and Root maggot.
6. Two tetraploid pollinators (FC6064X and FC6074X) were crossed to a high sucrose tetraploid population in order to produce a tetraploid Cercospora resistant pollinator population with better combining ability.

Progress in 1998

1. Selections were made this summer among half-sib progeny rows of the monogerm population. Families will be selected based on leaf spot resistance, curly top resistance, and combined leaf spot and curly top resistance. They will be increased and tested in the Cercospora nursery and curly top nursery. They have been also planted in Salinas to select for the single gene source of Rhizomania resistance. Selected roots have been recombined and the resulting population(s), tested, O-type screened, released, or reselected. This population has been split and is being selected at the USDA-ARS station in Salinas, CA for resistance to rhizomania and screened for agronomic performance and resistance to other important diseases present in California. These populations will be used to provide source populations for Cercospora and Rhizomania resistance.
2. Plants $\left(F_{2}\right)$ from the CTR/LSR multigerm cross (2 above) were planted in the breeding nursery last summer and $a a$ females crossed to the ($\mathrm{FC709-2} \times \mathrm{FC} 907$) F_{2} roots selected in the Rhizoctonia nursery. This seed was bulk increased and the resulting population will be a source of curly top resistant multigerm pollinators with leaf spot and Rhizomania resistance. It is being tested this summer.
3. Plants $\left(F_{2}\right)$ from the Fort Collins and Fargo joint project (3) were grown in the breeding nursery and these roots were planted in Masonville this summer and selfed, taking advantage of the 'pseudo self-fertility' that occurs in this environment. This selfed seed will be progeny tested this summer. This population will be a source of highly leaf spot resistant multigerm pollinators with curly top resistance and good combining ability for agronomic traits.
4. FC907 should be released as soon as there is sufficient seed. This Cercospora leaf spot-resistant, multigerm parent developed in Fargo (FC907), has been crossed with FC709-2, a Rhizoctonia and Cercospora resistant multigerm pollinator germplasm from Fort Collins. This population will
be a source of self-incompatible lines with excellent root rot and leaf spot resistance. This F_{2} population was selected in the Rhizoctonia nursery last year and was bulk-increased in the greenhouse this winter. It was tested in both Rhizoctonia and Cercospora nurseries this summer. It has also been crossed with a high sucrose population and a population with curly top resistance. Seed from these populations will be re-selected for resistance to leaf spot, root rot, and curly top as well as agronomic performance.
5. The F_{1} hybrid of $\mathrm{FC} 907 \times$ FC709-2 was crossed in the greenhouse in Fargo with root maggot resistant germplasm. The resulting population F_{2} was grown out in Fargo and selected to produce plants that have combined resistance to leaf spot, root rot, and root maggot. This is a continuing joint USDA project to combine root maggot resistance with resistance to other important diseases.
6. F_{1} seed has been harvested and the F_{2} bulk increased in the greenhouse this winter. It will be screened and selected next summer in the field.

The seed from the above mentioned populations will be developed and advanced after testing. Development of a resistant germplasm line generally takes 7 years. A longer time may be necessary to incorporate multiple disease resistances. In an established program, a "pipeline" of lines in various stages of development and evaluation is the norm. Hence, the release of new germplasm usually occurs every 2 to 4 years.

Genetic information developed in this research will be used to execute additional cycles of pathogen inoculation, plant selection, and recombination among germplasms that we have in our leaf spot improvement program. Results of these tests will be the basis of decisions about specific germplasm, i.e., retain, discard, recombine, release, etc. Germplasms likely to be useful for variety improvement are identified and released for use by other sugar beet breeders. Breeding techniques are compared in developing these germplasm and information on the efficacy and efficiency of these techniques generated.

Table 5. Experiment 3A, 1998. Leaf Spot Evaluation of USDA-ARS Fort Collins, Salinas, East Lansing, and Fargo breeding lines

$\begin{aligned} & \text { Entry } \\ & \text { No. } \end{aligned}$	Seed Source		USDA-ARS Location	08/25/98	Disease Ind $09 / 03 / 98$	09/08/98
$L^{\text {LSD }}$				0.70	0.87	0.96
1412	931002	LSS 2		4.0	4.2	4.5
1413	821051H2	LSR ${ }^{3}$		2.7	2.7	3.2
1385	97 A 050	FC607	Fort Collins	2.5	2.8	3.0
1389	921024	FC709-2	Fort Collins	2.8	2.7	3.0
1388	831085HO	FC708	Fort Collins	2.8	2.7	3.0
1373	96A009	EL50	East Lansing	2.7	2.8	3.2
1386	921022	FC702-7	Fort Collins	2.5	2.8	3.2
1360	98J09-00		East Lansing	2.8	2.5	3.3

Table 5. Experiment 3A, 1998. Leaf Spot Evaluation of USDA-ARS Fort Collins, Salinas, East Lansing, and Fargo breeding lines

$\begin{aligned} & \hline \text { Entry } \\ & \text { No. } \\ & \hline \end{aligned}$	Seed Source		USDA-ARS Location		$\begin{gathered} \hline \hline \text { Disease Ind } \\ \hline 09 / 03 / 98 \\ \hline \end{gathered}$	09/08/98
LSD $_{10,0}$				$\begin{gathered} 08 / 25 / 98 \\ \hline 0.70 \end{gathered}$	0.87	0.96
1412	931002	LSS ${ }^{2}$		4.0	4.2	4.5
1413	821051H2	LSR ${ }^{3}$		2.7	2.7	3.2
1397	CR712		Salinas	3.2	2.8	3.3
1376	972026		Fargo	2.8	2.8	3.3
1379	972023		Fargo	2.8	2.8	3.3
1404	R710		Salinas	3.0	2.8	3.3
1369	96RR		East Lansing	3.0	3.0	3.3
1390	911026HO	FC715	Fort Collins	2.8	3.0	3.3
1364	WC960444	SR87	East Lansing	2.8	3.0	3.3
1382	96N0012		Fargo	2.7	3.0	3.3
1362	98J27-00		East Lansing	3.2	3.0	3.3
1395	CR 711		Salinas	3.2	3.0	3.3
1366	96HS3-01		East Lansing	3.0	2.8	3.5
1380	96N0009		Fargo	3.0	2.7	3.5
1374	AF89-212	FC607	Fargo	3.2	3.0	3.5
1387	921021	FC703-5	Fort Collins	3.2	2.8	3.5
1372	97A004	EL48	East Lansing	2.7	3.2	3.5
1400	R709-1		Salinas	2.8	2.8	3.5
1371	WC970457		East Lansing	3.2	3.0	3.5
1398	CR713		Salinas	3.3	2.8	3.5
1361	98J11-011		East Lansing	3.0	3.0	3.5
1394	97-SP22-0		Salinas	3.2	2.7	3.5
1402	R709-9		Salinas	2.7	2.8	3.5
1381	96N0011		Fargo	3.0	2.8	3.7
1406	R710-10		Salinas	2.7	3.0	3.7
1405	R710 HSO		Salinas	3.2	3.0	3.7
1392	951017	FC727	Fort Collins	3.3	3.3	3.7
1393	921025	FC728	Fort Collins	3.0	3.2	3.7
1378	972029		Fargo	3.2	3.2	3.8
1391	911031	FC717	Fort Collins	3.0	3.2	3.8
1375	972025		Fargo	3.3	3.2	3.8
1384	97N0051		Fargo	3.3	3.0	3.8
1377	972024		Fargo	3.2	3.3	3.8
1363	97J51-00		East Lansing	3.0	3.5	4.0
1408	R710-14HSO		Salinas	3.2	3.0	4.0
1399	7932CT		Salinas	3.2	2.8	4.0
1403	R709-9HSO		Salinas	3.3	3.5	4.2
1365	WC960448	SR94	East Lansing	3.2	3.3	4.2
1367	WC960452		East Lansing	3.0	3.2	4.2

Table 5. Experiment 3A, 1998. Leaf Spot Evaluation of USDA-ARS Fort Collins, Salinas, East Lansing, and Fargo breeding lines

Entry No.	Seed Source	USDA-ARS Location	08/25/98	$\begin{gathered} \hline \hline \text { Disease Ind } \\ \hline 09 / 03 / 98 \end{gathered}$	09/08/98
		LSD	0.70	0.87	0.96
1412	931002 LSS 2		4.0	4.2	4.5
1413	821051H2 LSR^{3}		2.7	2.7	3.2
1409	R726	Salinas	3.3	3.7	4.3
1370	WC970308	East Lansing	4.0	4.0	4.5
1410	Y769(Iso)	Salinas	3.7	4.0	4.5
1401	R709-1HSO	Salinas	4.2	4.2	4.7
1407	R710-10HSO	Salinas	3.8	4.0	4.7
1368	SR93	East Lansing	4.0	4.3	5.0
1383	97N0132	Fargo	3.8	3.8	5.0
1396	CR711HSO	Salinas	4.2	4.3	5.2
1411	5KJ0142	Salinas	5.8	6.8	7.2

${ }^{1}$ Disease Index is based on a scale of 0 (=healthy) to 10 (=dead).
${ }^{2}$ The Leafspot Susceptible Check is SP351069-0.
${ }^{3}$ The Leafspot Resistant Check is FC 504CMS/FC 502-2/ISP6322-0

Table 6. Experiment 8A, 1998. Leaf Spot Evaluation of USDA-ARS Fort Collins.

				sease Index	
	Seed Source \&	Description	08/25/98	09/03/98	09/08/98
		LSD $_{(0,05)}$	1.04	0.88	0.97
821051H2	resistant check ${ }^{2}$		1.67	2.17	2.83
931002	susceptible check ${ }^{3}$		6.00	5.67	5.83
971017	FC710 (4X)		1.33	2.17	2.50
921024	FC709-2		1.83	2.33	2.67
971013PF			1.83	2.50	2.83
86A005	SP 8540-0		2.67	2.33	3.00
96 A003	892016H2	FC607 OT/Beta 2007 (2X)	2.17	2.83	3.00
78A044	FC606		1.83	2.50	3.00
971020	FC907-1	FC607/FC701 BC_{4}	2.00	2.17	3.00
964002	892010H2	FC607 OT/ Hilleshög 8277	2.33	2.67	3.00
86A013	SP 85657-01		2.33	2.33	3.17
961014	FC724	FC702/LSR-CTR	2.17	2.67	3.17
961015	FC720	C718//(C718/FC708)	2.50	2.67	3.17
97A051	FC607CMS		2.00	2.67	3.33
961011HO		FC607/FC708	2.17	2.50	3.33
961011 HO 1		FC607/FC708CMS	2.83	2.83	3.33
86A007	SP 85576-01		2.33	2.50	3.33
971018	FC712 (4X)		2.17	2.33	3.33

Table 6. Experiment 8A, 1998. Leaf Spot Evaluation of USDA-ARS Fort Collins.

				sease Ind	
	Seed Sour	Description	08/25/98	09/03/98	09/08/98
		LS	1.04	0.88	0.97
821051H2	resistant che		1.67	2.17	2.83
931002	susceptible		6.00	5.67	5.83
97 A 050	FC607		2.33	2.83	3.50
951016 HO	FC723	EL44/FC708 mm	2.33	2.50	3.50
86A008	SP 85576-0		2.50	3.00	3.50
951016HO1	FC723CMS	EL44/FC708 CMS	2.67	3.17	3.67
981009 H		907/709-2F2-Sel Rhzc	2.83	3.00	3.67
961010 HO 1	FC722CMS	C718/FC708 CMS	2.67	3.00	3.67
921019	FC729	FC712/A4 3 cycles of RhzcR	2.83	3.17	3.67
961010 HO	FC722	C718/FC708	2.67	3.33	3.83
981007H		LSR-RHZCR	3.17	3.50	3.83
951013		Source population	3.00	3.17	3.83
86 A014	SP 85657-0		3.33	3.00	4.00
971012PF			2.67	3.00	4.00
981012		LSR-CTR	3.33	3.50	4.17
. 971010			4.17	4.67	5.50

${ }^{1}$ Disease Index is based on a scale of 0 (=healthy) to 10 (=dead).
${ }^{2}$ The Leafspot Resistant Check is FC 504CMS/FC 502-2/ISP6322-0
${ }^{3}$ The Leafspot Susceptible Check is SP351069-0.

Table 7. 1998 Curly Top Nursery in Kimberly Idaho.

Entry	Seed Source	Description	Disease Index ${ }^{1}$	
			08/27/98	09/16/98
138	911032	FC718-Susceptible Check	2.5	5.0
139	94A068	Beta G6040 - Resistant Check	2.5	3.0
207	981012	LSR-CTR	3.3	4.0
203	951016HO1	FC723CMS EL44/FC708 CMS	2.3	4.3
202	951016HO	FC723 EL44/FC708 mm	3.0	4.3
214	971020	FC907-1 FC607/FC701 BC4	2.7	4.3
212	971017	FC710 (4X)	3.0	4.7
213	971018	FC712 (4X)	3.0	4.7
205	961011HO1	FC607/FC708CMS	2.7	5.0
200	961010HO	FC722 C718/FC708	3.7	5.0
215	961015	FC720 C718//(C718/FC708)	3.3	5.0
201	961010HO1	FC722CMS C718/FC708 CMS	3.0	5.3
204	961011HO	FC607/FC708	3.3	5.3
208	981009H	907/709-2F2-Sel Rhzc	4.0	5.3
209	961014	FC724 FC702/LSR-CTR	3.3	5.3
216	921019	FC729 FC712/A4 3 cycles of Rhizoc selection	3.7	5.7
9	$981010-16$		2.0	3.0
2	981010-5		2.0	3.0

Table 7. 1998 Curly Top Nursery in Kimberly Idaho.

Entry	Seed Source	Description	Disease Index ${ }^{1}$	
			08/27/98	09/16/98
138	911032	FC718-Susceptible Check	2.5	5.0
139	94A068	Beta G6040 - Resistant Check	2.5	3.0
3	981010 -6		2.0	3.0
33	981011 -21		2.0	3.0
23	981011 -8		2.0	3.0
10	$981010-17$		2.0	3.0
98	981007-40		2.0	3.0
95	981007 -35		2.0	3.0
185	98AO-87		2.5	3.0
44	981006-17		2.0	3.5
47	$981006-21$		2.0	3.5
62	$981006-54$		2.5	3.5
73	$981006-70$		2.5	3.5
45	$981006-18$		2.0	3.5
115	981007 -78		2.0	3.5
152	98A0 -53		3.0	3.5
20	981011 -4		2.0	3.5
26	981011 -11		2.0	3.5
32	981011 -18		2.5	3.5
5	$981010-8$		2.0	3.5
178	98A0 -80		2.5	3.5
90	981007 -20		2.0	3.5
136	981007 -135		2.5	3.5
92	981007 -29		2.0	3.5
91	981007 -24		2.5	3.5
164	98A0 -66		2.0	3.5
160	98AO -62		2.5	3.5
155	98AO -57		2.0	3.5
154	98AO -55		3.0	3.5
153	98AO-54		2.5	3.5
101	981007-44		1.5	3.5
97	981007 -38		2.0	3.5
191	98A0 -93		2.0	3.5
94	981007 -34		2.5	3.5
114	$981007-76$		2.5	3.5
194	98AO -96		2.5	3.5
193	98AO -95		2.5	3.5
89	981007 -19		2.0	3.5
137	981007 -139		2.0	3.5
18	981011 -1		2.0	3.5
83	981007 -7		2.5	3.5
188	98A0 -90		3.0	4.0
196	98AO -98		3.0	4.0
192	98A0 -94		2.5	4.0
175	98AO -77		2.5	4.0

Table 7. 1998 Curly Top Nursery in Kimberly Idaho.

Entry	Seed Source	Description	Disease Index ${ }^{1}$	
			08/27/98	09/16/98
138	911032	FC718 - Susceptible Check	2.5	5.0
139	$94 \mathrm{A068}$	Beta G6040 - Resistant Check	2.5	3.0
149	98AO -50		4.0	4.0
151	98A0 -52		3.5	4.0
80	981007 -2		3.0	4.0
79	$981006-110$		3.0	4.0
41	$981006-10$		2.0	4.0
179	98A0 -81		3.0	4.0
180	98A0 -82		2.5	4.0
35	981011 -45		2.5	4.0
27	$981011-12$		2.5	4.0
11	$981010-18$		3.5	4.0
15	$981010-23$		2.5	4.0
4	$981010-7$		2.5	4.0
128	981007 -106		2.5	4.0
113	981007 -65		2.0	4.0
131	981007 -116		2.5	4.0
129	981007 -112		3.0	4.0
118	981007 -83		3.0	4.0
135	981007-125		3.0	4.0
88	981007 -18		3.0	4.0
93	981007-31		2.0	4.0
108	981007 -55		3.0	4.0
109	$981007-56$		2.5	4.0
110	$981007-58$		3.0	4.0
119	$981007-90$		3.0	4.0
74	$981006-71$		3.0	4.0
87	$981007-15$		2.5	4.0
68	$981006-60$		2.5	4.0
43	$981006-15$		2.0	4.0
67	981006-59		2.5	4.0
181	98A0-83		2.5	4.0
182	98AO -84		3.0	4.0
183	98AO -85		3.0	4.0
184	98AO -86		3.0	4.0
64	981006-56		3.0	4.0
186	98A0 -88		2.5	4.0
28	981011 -13		3.0	4.0
6	$981010-9$		2.5	4.0
34	981011 -29		2.0	4.0
31	981011 -17		2.5	4.0
29	981011-15		3.5	4.0
22	981011 -7		3.0	4.0
21	981011 -5		2.0	4.0
42	981006 -12		3.0	4.5

Table 7. 1998 Curly Top Nursery in Kimberly Idaho.

Entry	Seed Source	Description	Disease Index ${ }^{1}$	
			08/27/98	09/16/98
138	911032	FC718 - Susceptible Check	2.5	5.0
139	94A068	Beta G6040 - Resistant Check	2.5	3.0
69	981006-61		3.0	4.5
53	981006-32		3.5	4.5
84	981007 -11		2.5	4.5
50	$981006-26$		3.0	4.5
82	981007 -6		3.0	4.5
81	981007 -5		2.5	4.5
187	98A0-89		3.5	4.5
132	981007-119		3.0	4.5
133	981007-123		3.5	4.5
117	981007-82		3.0	4.5
116	981007-80		3.0	4.5
170	98A0-72		3.0	4.5
112	$981007-60$		2.5	4.5
134	981007-124		3.0	4.5
75	$981006-72$		3.0	4.5
99	$981007-41$		3.0	4.5
49	$981006-25$		3.0	4.5
36	981006 -2		2.5	4.5
56	981006-36		3.5	4.5
85	981007 -13		3.5	4.5
106	981007-52		3.0	4.5
51	$981006-27$		3.5	4.5
7	$981010-11$		3.5	4.5
12	$981010-19$		4.0	4.5
1	$981010-4$		3.0	4.5
197	98AO-99		3.5	-4.5
65	981006-57		3.5	4.5
189	98A0-91		3.5	4.5
71	981006-65		3.0	4.5
102	981007 -45		2.5	4.5
104	981007-50		3.5	4.5
96	981007-36		2.0	4.5
48	$981006-23$		3.0	4.5
63	981006-55		3.5	4.5
40	$981006-7$		3.0	4.5
122	981007-93		3.5	4.5
146	98A0-46		3.5	4.5
167	98AO -69		3.0	4.5
177	98A0 -79		3.0	4.5
173	98AO -75		3.0	4.5
141	98AO -41		3.0	4.5
150	98AO -51		2.5	4.5
30	981011-16		2.5	4.5

Table 7. 1998 Curly Top Nursery in Kimberly Idaho.

Entry	Seed Source	Description	Disease Index ${ }^{1}$	
			08/27/98	09/16/98
138	911032	FC718-Susceptible Check	2.5	5.0
139	944068	Beta G6040 - Resistant Check	2.5	3.0
165	98A0 -67		2.5	4.5
24	981011 -9		3.0	4.5
19	981011 -3		3.0	4.5
25	981011 -10		2.5	4.5
176	98A0-78		2.5	4.5
174	98A0 -76		3.0	4.5
156	98A0 -58		3.0	4.5
130	981007 -114		3.0	5.0
100	$981007-42$		2.5	5.0
105	981007-51		3.0	5.0
111	981007 -59		2.5	5.0
142	98A0 -42		3.5	5.0
14	$981010-21$		3.0	5.0
148	98A0-49		4.0	5.0
8	981010-15		4.0	5.0
107	981007-53		2.5	5.0
70	981006-62		2.5	5.0
55	$981006-34$		3.0	5.0
54	981006-33		3.0	5.0
78	981006-87		3.0	5.0
72	$981006-68$		3.0	5.0
120	981007-91		3.0	5.0
144	98A0 -44		4.0	5.0
158	98AO -60		3.0	5.0
13	981010-20		3.5	5.0
52	981006 -31		3.5	5.0
161	98A0 -63		3.5	5.0
162	98A0 -64		3.5	5.0
163	98A0 -65		4.0	5.0
57	$981006-37$		3.5	5.0
46	981006-19		2.5	5.0
166	98A0-68		4.0	5.0
58	$981006-38$		3.5	5.0
168	98A0 -70		3.0	5.0
169	98AO-71		3.5	5.0
103	$981007-48$		3.5	5.0
172	98A0-74		4.0	5.0
195	98A0-97		3.5	5.0
159	98A0 -61		3.5	5.5
86	981007 -14		3.5	5.5
147	$98 \mathrm{AO}-47$		4.0	5.5
145	98A0 -45		4.0	5.5
143	98A0 -43		4.0	5.5

Table 7. 1998 Curly Top Nursery in Kimberly Idaho.

Entry	Seed Source	Description	Disease Index ${ }^{1}$	
			08/27/98	09/16/98
138	911032	FC718 - Susceptible Check	2.5	5.0
139	94A068	Beta G6040 - Resistant Check	2.5	3.0
123	981007-94		4.5	5.5
38	981006-4		4.0	5.5
171	98A0-73		4.0	5.5
59	$981006-41$		4.5	5.5
37	$981006-3$		4.0	5.5
76	$981006-75$		3.5	5.5
60	$981006-43$		4.5	5.5
121	$981007-92$		3.0	5.5
39	981006 -6		4.0	5.5
61	$981006-48$		4.0	5.5
17	$981010-30$		3.5	6.0
124	981007 -95		4.5	6.0
127	981007-105		3.5	6.0
157	98A0-59		4.5	6.0
126	981007-97		4.5	6.5
140	98A0-40		4.5	6.5
16	$981010-28$		4.5	6.5
77	$981006-76$		4.5	6.5
66	981006-58		5.0	6.5
198	98A -100		5.5	6.5
125	981007 -96		5.5	7.0

${ }^{1}$ Disease Index is based on a scale of 1 (=healthy) to 9 (=dead).

PRE-BREEDING: THE INTROGRESSION OF NEW SOURCES OF CERCOSPORA LEAF SPOT RESISTANCE FROM BETA VULGARIS SPP. MARITIMA AND OTHER EXOTIC SOURCES INTO SUGAR BEET-TYPE POPULATIONS. (BSDF Project 443)
 L. Panella

A major emphasis of the research mission of the USDA-ARS plant scientists is the collection, documentation, characterization, evaluation, regeneration (maintenance), distribution, and utilization of plant germplasm, especially Plant Introduction (PI) accessions in the USDA-ARS National Plant Germplasm System (NPGS). The Sugar Beet Research Unit at Fort Collins is coordinating the national program for Beta germplasm evaluation. In addition to the evaluation for Rhizoctonia and Cercospora resistance, it is crucial that the ARS scientist be involved in the long rang, high risk research problems involved in sugar beet 'germplasm enhancement' or 'pre-breeding'. This is an important component in the overall sugar beet improvement effort of the Fort Collins Sugar Beet Research Unit.

Justification for Research: Cercospora leaf spot (caused by the fungus Cercospora beticola Sacc.) is one of the most widespread diseases of sugar beet and is a serious problem in many sugar beet production areas throughout the U.S. The disease damages the leaves, which, consequently, reduces root yield, percent sucrose of roots, and purity of the extracted juice. Cercospora leaf spot currently is controlled by combining spraying with commercial fungicides and the use of disease tolerant germplasm. The development of Cercospora leaf spot resistant sugar beet lines and hybrids with greater levels of host-plant resistance offers a more sustainable solution to this disease problem.

If the level of resistance available in some Cercospora-resistant experimental breeding lines were present in commercial hybrids (along with good sugar and seed yield), the need for fungicides could be greatly reduced. That continued improvement in genetic resistance to this serious pathogen is still needed is evident by the occurrence of Cercospora strains that are tolerant to our most potent fungicides. Additionally, some fungicides may be removed from the market because of their perceived or real threat to the environment.

Finally, the genepool for resistance to Cercospora leaf spot is extremely narrow. Many of the resistant lines are highly inbred, therefore, closely related to one another, and stem from germplasm coming out of Italy in the early 1900s. In the germplasm developed at Fort Collins, continued inbreeding has increased the level of disease resistance, but at the cost of plant vigor. Over the long term, a secure, sustainable response to this disease requires commercial quality hybrids with good host-plant resistance.

Objectives:

1. The formation of long range breeding populations through the introgression of Cercospora resistant germplasm from "exotic" sources (Beta vulgaris spp. maritima, fodder beet, foreign sugar beet landraces from the PI collection, etc.).
2. The development of germplasm populations from these long range populations that are of sufficient agronomic quality to be of use to commercial breeders. They will be a source of
leaf spot resistance with differing genetic backgrounds.
3. The development of techniques (both traditional and molecular) to more efficiently introgress the exotic germplasm into sugar beet breeding populations.

Research Progress 1998:

Crosses have been made or are being attempted in the greenhouse on the list of accession below (Table 8), all of which have been identified as having Cercospora resistance. F_{1} seed of three crosses ($96 \mathrm{~A} 011,96 \mathrm{~A} 015$, and 96A016 as donor parents) is being bulk increased in the greenhouse (Table 9). All show some biennial plants in our environment and were crossed to genetic male sterile (aa) sugar beets. These crosses should be completed by the beginning of 1999. At that point we will consider re-crossing some of those from which we obtained insufficient seed.

Seed from the first three crosses is maturing and will be harvested early summer; it will be random mated this coming season. The annuals will be handled in a similar fashion once they have been crossed. All will be cycled through at least three cycles of random mating.

Table 8. Exotic Cercospora-leaf-spot-resistant (LSR) donor parents identified for this project

Accession Number	Donor Designation	Name or Origin	\% Bolting without induction 1996 Fort Collins
96A010	PI 535826	Giant Poly	20\%
96 A 011	PI 535833	Saturn	0\%
96 A 014	PI 540593	WB 847	0\%
96 A 015	PI 540596	WB 850	70\%
96 A 017	PI 540605	WB 859	25\%
96 A 012	PI 535843	PN MONO 1	100\%
96 A 013	PI 540575	WB 829	100\%
96A016	PI 540599	WB 853	50\%
94 A 079	\#32375 (B. v. ssp. maritima)	Greece	annual
94A080	\#36538 (B. v. ssp. maritima)	Greece	annual
94 A 081	\#45511 (B. v. ssp. maritima)	Greece	annual
94 A 082	\#45516 (B. v. ssp. maritima)	Greece	annual
94A083	\#48810 (B. v. ssp. maritima)	Tunisia	annual
94 A 084	\#48819 (B. v. ssp. maritima)	Tunisia	annual
94A085	\#51430 (B. v. ssp. maritima)	Greece	annual

Table 9. Crosses between commercial sugar beet type and exotic Cercospora-leaf-spotresistant (LSR) donor parents
Seed No. $\quad F_{1}$ Crosses Attempted

971021 Cross of Sucrose MM (961005aa) plants with PIs that were evaluating as having LSR (PI535826 - biennial)
971022 Cross of Sucrose MM (961005aa) plants with PIs that were evaluating as having LSR (PI535833 - biennial)
971023 Cross of Sucrose MM (961005aa) plants with PIs that were evaluating as having LSR (PI540593 - biennial)
971024 Cross of Sucrose MM (961005aa) plants with PIs that were evaluating as having LSR (PI540596 - biennial)
971025 Cross of Sucrose MM (961005aa) plants with PIs that were evaluating as having LSR (PI540605 - biennial)
971026 Cross of Sucrose MM (961005aa) plants with PIs that were evaluating as having LSR (PI535843 - annual)
971027 Cross of Sucrose MM (961005aa) plants with PIs that were evaluating as having LSR (PI540575 - annual)
971028 Cross of Sucrose MM (961005aa) plants with PIs that were evaluating as having LSR (PI540599 - annual)
971029 Cross of Sucrose MM (961005aa) plants with PIs that were evaluating as having LSR (\#32375 94A079 - annual)
971030 Cross of Sucrose MM (961005aa) plants with PIs that were evaluating as having LSR (\#36568 94A080 - annual)
981001 Cross with Sucrose MM (961005aa) - LSR population, B v sp maritima from BAZ Genebank (\#45511 from the Peloppennese)
981002 Cross with Sucrose MM (961005aa) - LSR population, B v sp maritima from BAZ Genebank (\#45516 from the Peloppennese)
981003 Cross with Sucrose MM (961005aa) - LSR population, B v sp maritima from BAZ Genebank (\#48810 from the Peloppennese)
981004 Cross with Sucrose MM (961005aa) - LSR population, B v sp maritima from BAZ Genebank (\#48819 from the Peloppennese)
981005 Cross with Sucrose MM (961005aa) - LSR population, B v sp maritima from BAZ Genebank (\#51430 from the Peloppennese)
Seed No. $\quad F_{2}$ Seed Produced

981031 Increase of 971021 H 2 (Sucrose MM (961005aa) x LSR PI535826) biennial maritima LSR source introgression
981032 Increase of 971024H2 (Sucrose MM (961005aa) x LSR PI540596) biennial maritima LSR source introgression
981033 Increase of 971028 H 2 (Sucrose MM (961005aa) x LSR PI540599) annual maritima LSR source introgression

Development of a resistant germplasm line generally takes seven years. A longer time will be necessary to incorporate disease resistance from more exotic sources. Because this is a new program it will take time for the first germplasm to make it through the process. Once that happens, there will be a "pipeline" of germplasm in various stages of development and the release of new germplasm will occur every two to four years. The incorporation of exotic sources into agronomically acceptable germplasm is a long term proposition - results will not appear overnight. This is the type of longterm, high risk germplasm research that ARS is well-suited to perform.

Materials and Methods: Artificial inoculation with Cercospora beticola and leaf spot scoring will be used to identify the resistant germplasm sources and make selections in the developing populations. The exotic materials will be crossed into sugar beet populations that have been selected for agronomic quality (recoverable sucrose yield). These are currently under development using germplasm received from commercial breeding programs, public sources (e.g., L19), and some high sucrose germplasm fromPoland. These sugar beet populations will be self-fertile (S^{f}) and segregating for nuclear male sterility ($A-: a a$). Populations will be handled in the following manner: 1) Following the initial cross, a population will be random mated (using aa females because of the self-fertility) for three to four generations to break up linkage groups and remove annual plants. 2) Sugar beet-type mother roots will be selected, selfed, and progeny tested for agronomic performance and disease resistance. 3) Selected roots will be recombined (and backcrossed if desirable) and re-selected until they ready for release. Molecular markers (RFLPs, RAPDs, SSRs, AFLPs, etc.) will be used to expedite the backcrossing program and to follow the change in allele frequencies in the selected populations. Advanced populations will be released to the sugar beet seed industry.

Summary of Literature: Cercospora leaf spot has been an intermittent problem in sugar beet growing areas of the United States where the summers can be hot and humid (Red River Valley, Michigan, Ohio, and, less often, Great Plains growing areas and California). It has been estimated that a severe epidemic can cause up to a 42% loss of gross sugar (Smith and Martin, 1978; Smith and Ruppel, 1973), or up to a 43% relative dollar loss (Shane and Teng, 1992).

Resistance to Cercospora leaf spot has long been a goal of the USDA-ARS sugar beet research program at Fort Collins and researchers there developed the techniques necessary to manage the screening nurseries in such a way as to promote the development of the disease (Ruppel and Gaskill, 1971). A careful crop rotation (sugar beet-barley-barley-barley-sugar beet) and the arid climate and low relative humidity have allowed this to be done in such a manner that there are rarely high enough levels of any other disease present in the leaf spot nursery to confound the results.

There are an estimated 4 or 5 genes responsible for Cercospora resistance (Smith and Gaskill, 1970) and broad-sense heritability estimates ranged from 12 to 71% (Bilgen et al., 1969). Narrow-sense heritability estimates of about 24% compared well with realized heritability values, and 44 to 62% of the variation was due environment in this test (Smith and Ruppel, 1974). The large environmental variation has made it difficult to make progress in developing Cercospora resistance through mass selection. Incorporation of high levels of leaf spot resistance into varieties with superior agronomic performance also is difficult (Smith and Campbell, 1996) and, therefore, commercial resistant varieties require some fungicide application to provide adequate levels of protection against Cercospora (Miller et al., 1994).

A major problem in the development of Cercospora-resistant sugar beet is the loss of vigor due to the continual inbreeding. Coons (1955) noted this and it has been a concern ever since (McFarlane, 1971). The use of hybrid varieties has ameliorated this problem to some extent, but seed production on the highly inbred O-type males and CMS females still is a problem. This is seen in germplasm from both the FC 500 and FC 600 series developed at Fort Collins.

The USDA-ARS National Plant Germplasm System Beta collection has over 2,000 Plant Introduction (PI) accessions. The germplasm used most often in sugar beet breeding is from Beta vulgaris spp. vulgaris, which includes all of the biennial sugar beet types, or from Beta vulgaris spp . maritima, which contains the closely related wild sea beet and has both annual and biennial types. Germplasm with a biennial flowering habit is easier both to introgress and screen. Beta vulgaris spp. maritima has, nonetheless, been used as a source of resistant germplasm. Much of the Cercospora-resistant germplasm in use today came out of Munerati's program in Italy, in which B. vulgaris spp. maritima was the source of resistance genes (Lewellen, 1992). There have been very few new efforts to locate and incorporate other sources of resistance to Cercospora into this narrow germplasm base.

There is an urgent need to continue to create in our Cercospora-resistant germplasm a broader genetic base than we have today. As commercial hybrid parents become more inbred, the germplasm base from which these inbred parents are developed must have the diversity necessary to provide for maximum gain through heterosis. Munerati's success, and the research of others, has shown that it can be done if we have the persistence to do it (Bilgen et al., 1969; Doney, 1993; Lewellen, 1995).

Bilgen, T., J.O. Gaskill, R.J. Hecker, and D.R. Wood. 1969. Transferring Cercospora leaf spot resistance from Beta maritima to sugarbeet by backcrossing. J. Am. Soc. Sugar Beet Technol. 15:444-449.

Coons, G.H., F.V. Owen, and D. Stewart. 1955. Improvement of the sugar beet in the United States. Adv. Agron. 7:89-139.

Doney, D.L. 1993. Broadening the genetic base of sugarbeet. J. Sugar Beet Res. 30:209-220.
Lewellen, R.T. 1992. Use of plant introductions to improve populations and hybrids of sugarbeet, p. 117-135. In: Use of Plant Introductions in Cultivar Development. Crop Science Society of America, Madison, WI.

Lewellen, R.T. 1995. Performance of near-isolines of sugarbeet with resistance to Rhizomania from different sources. Proceedings of the $58^{\text {th }}$ Congress of the International Institute for Beet Research. pp.83-92. Presses Universitaires de Bruxelles a.s.b.l., Bruxelles.

McFarlane, J.S. 1971. Variety development, p. 402-435. In: R.T. Johnson, J.T. Alexander, G.E. Rush, and G.R. Hawkes (eds.). Advances in Sugarbeet Production: Principles and Practices, $1^{\text {st }}$ ed. The Iowa State University Press, Ames, IA.

Miller, J., M. Rekoske, and A. Quinn. 1994. Genetic resistance, fungicide protection and variety approval policies for controlling yield losses from Cercospora leaf spot infections. J. Sugar

Ruppel, E.G. and J.O. Gaskill. 1971. Techniques for evaluating sugarbeet for resistance to Cercospora beticola in the field. J. Am. Soc. Sugar Beet Technol. 16:384-389.

Shane, W.W. and P.S. Teng. 1992. Impact of Cercospora leaf spot on root weight, sugar yield, and purity of Beta vulgaris. Plant Dis. 76:812-820.

Smith, G.A. and L.G. Campbell. 1996. Association between resistance to Cercospora and yield in commercial sugarbeet hybrids. Plant Breeding 115:28-32.

Smith, G.A. and J.O. Gaskill. 1970. Inheritance of resistance to Cercospora leaf spot in sugarbeet. J. Am. Soc. Sugar Beet Technol. 16:172-180.

Smith, G.A. and S.S. Martin. 1978. Differential response of sugarbeet cultivars to Cercospora leaf spot disease. Crop Sci. 18:39-42.

Smith, G.A. and E.G. Ruppel. 1973. Association of Cercospora leaf spot, gross sucrose, percentage sucrose, and root weight in sugarbeet. Can. J. Pl. Sci. 53:695-696.

Smith, G.A. and E.G. Ruppel. 1974. Heritability of resistance to Cercospora leaf spot in sugarbeet. Crop Sci. 14:113-115.

Transgenic Approaches to Modify Sucrose Distribution in Sugarbeet
Daniel R. Bush
ARS Photosynthesis Research Unit, Urbana, Ilinois

The proton-coupled sucrose transport protein mediates the key step in the longdistance transport of newly synthesized sucrose from the leaf to the taproot for storage. We have cDNA clones that code for this sucrose transporter. This transport protein is an excellent candidate for genetic engineering because it is capable of loading plant cells with molar concentrations of sucrose. Thus, directed expression of the gene for the sucrose transporter in the taproot could be used to enhance sucrose accumulation by increasing the uptake capacity of the storage cells. Moreover, we have discovered that a single amino acid substitution generates a transport protein that is 10 - to 15 -fold more active than the wild-type transporter. The long-term goal of this proposal is to increase sucrose storage in the taproot by using transgenic methods to express the "hyperactive" sucrose transporter in the storage cells of the taproot. The focus of the first year's research was to confirm our initial observation that a single amino acid change in the transport protein increased transport activity and secondly, to lay the foundation for cloning unique promoters that direct gene expression in the root tissues of plants.

Progress to Date

Since starting this project, we have made significant progress in describing the transport activity of the hyperactive form of the sucrose transporter we engineered with recombinant DNA technology, and we have started our analysis of transposon-tagged plants that will be used to clone tissue specific promoters. We showed that hyperactive transport activity is the result of faster flux through the transport protein versus increased abundance of the protein per cell. This was a key finding because it shows that the substituted amino acid plays an important role in the transport mechanism, which represents an important contribution our understanding of how this transport protein works. In addition, this was a key finding with regard to this project because it shows we do not have to over-express the sucrose transporter in the taproot to achieve significantly increased transport capacity. The results of our work with the hyperactive transporter were published in the Proceedings of the National Academy of Sciences.

The second major project this year was completing a thorough analysis of the expression pattern of transposon-tagged genes whose expression is limited to root tissue. We have showed that these genes are expressed in the root throughout the plant life cycle. We have also obtained short runs of genomic sequence that is adjacent to the inserted transposon. These genomic sequences will allow us to begin to clone the genes that have been tagged by the transposon. Since expression of these genes is limited to the root tissue, their promoters can be used to target hyperactive sucrose transporter expression in the taproot of transformed sugarbeet.

Lu J. M.-Y. and DR Bush 1998. His-65 in the proton-sucrose symporter is an essential amino acid whose modification with site-directed mutagenesis increases transport activity. Proc. Natl. Acad. Sci. USA 95:9025-9030

SUGAR BEET RESEARCH 1998 REPORT

Section C

U. S. D. A., A. R. S., Western Regional Plant Introduction Station Pullman, Washington

Dr. Alan Hodgdon, Beta Curator

This research was supported in part by funds provided through the Beet Sugar Development Foundation (Project 290)

CONTENTS

Status Report on the Beta germplasm Collection Activities by A. Hodgdon . C3

Status report on the Beta germplasm collection activities at the USDA, ARS, Western Regional Plant Introduction Station
 To the Beet Sugar Development Foundation
 Curator: Dr. Alan Hodgdon, 1999

W-6 has established an excellent working relationship with the IDBB in Europe for exchanging and increasing U. S. Beta germplasm. Approximately 200 PI accessions are being included in the developing IDBB Beta core collection. We received 47 wild beet accessions from Europe, and these have been introduced into the National Plant Germplasm System. In the 1998 crop year 80 PI's were increased in Europe (Table 1). Of these, 16 accessions are on our priority seed increase list. We have also had great support from Beta seed companies in the United States through the BSDF. In the 1998-99 season, 16 beet accessions will be increased by U.S. companies. This help is greatly appreciated.

There are now down to 470 Beta accessions on the increase priority list. This is down from 537 in 1997. The list will decrease by about 50 when this year's seed totals are known. There are 20 accessions in our inventory that we have not been able to germinate. Sixteen of these are probably lost from the collection.

In 1998 we purchased and installed a new walk-in growth chamber for vernalizing seedlings. This is now in use and has improved our facilities greatly. Our farm manager has constructed an excellent new seed thresher which will be used mainly for the Beta program. The principle problems with our current increase program are lack of greenhouse space and poor overwintering of our field plots. We may have to increase all biennial Beta in the greenhouses using artificial vernalization, and we are trying to get more greenhouse space.

In 1998 we viability tested 54 samples from the 1996 harvest. Of these accessions, two had less than 50% viability. Nineteen of these accessions were more than 40% dormant. Samples from 45 accessions from the 1997 harvest are now being germ tested. Also at NSSL, 19 accessions of W-6 increases from 1993, 1994, and 1995 were tested. One of these samples had 30% viability and the remaining were in the $80-90 \%$ range.

We continue to backup seed at NSSL. At W-6 we have a new $-20^{\circ} \mathrm{C}$ freezer for seed backup. In this program we have frozen 1,130 original Beta seed samples with each sample containing at least 200 seed. We have frozen 706 PI regeneration samples of 400 seed each per accession. These sample were carefully chosen for viability and to represent the original seed source. Four hundred seed should be sufficient for two regeneration cycles.

In the interest of further research and at the request of the Sugarbeet Crop Germplasm Committee we derived a core collection for the U. S. Beta germplasm collection. The Beta core collection was derived from Beta vulgaris ssp. vulgaris, and Beta vulgaris ssp. maritima. In the development of these cores two different sets of selection criteria were used depending upon the taxa.

Beta vulgaris ssp. maritima

1. Initially we were going to select by ecogeographical region (Mediterranean, Norther European, and Transition Zone (France)), but actually randomly selected 10% from each country, or at least one accession from each country where there were less than 10 accessions.

Beta vulgaris ssp. vulgaris

1. Breakdown by beet type or use type (Sugar Beet, Leaf Beet, Fodder Beet, Table Beet)
2. Similar to the B. vulgaris ssp. maritima, we were going to select by ecogeographical region (Mediterranean, Norther European, and Transition Zone (France)), but actually randomly selected 10% from each country, or at least one accession from each country where there were less than 10 accessions.

We have yet to derive a scheme to weight the US gene pool since this group is heavily represented in the sugar beets. Members of the Sugar Beet Crop Germplasm Committee are addressing this point now.

Table 1. Beta seed increase activity at W-6 in the years 1995-1998.
Location Year \#Started No Germination \# Harvested Carryover

W-6	1995	94	9	27	
W-6	1996	62	5	66	
W-6	1997	92	5	59	
Novartis	1997	16		16	
W-6	1998	83	7	77	74
Europe	1998	80			80
U.S.	1998	16		16	
			443	23	245

SUGARBEET RESEARCH

1998 Report

SECTION D

U.S. Department of Agriculture, Agricultural Research Service, Northern Crop Science Laboratory, Sugarbeet \& Potato Research Unit 1307 N $18^{\text {th }}$ St., P.O. Box 5677, Fargo, North Dakota 58105-5677

Telephone Number: (701) 239-1350
Fax Number: (701) 239-1349

SUGARBEET AND POTATO RESEARCH UNIT

Dr. L.G. Campbell, Geneticist
Mr. J.D. Eide, Plant Physiologist
Dr. K.L. Klotz, Plant Physiologist
Dr. R.L. Pingel, Entomologist
Dr. G.A. Smith, Geneticist, Retired
Ms. R.L. Stolzenberg, Microbiologist
Dr. J.J. Weiland, Plant Pathologist

Cooperation:

North Dakota State University
Sugarbeet Research and Education Board of MN and ND
University of Minnesota, Crookston

The research was supported in part by funds provided through the Beet Sugar Development Foundation. (Projects 601, 610, 620, 630, and 642.)

CONTENTS

PAGE

PUBLICATIONS D3
CHARACTERIZATION OF GENE AND GENE PRODUCTS INVOLVED IN CERCOSPORA RESISTANCE IN SUGARBEET D6
G.A. SMITH, J.J. WEILAND, AND J.D. EIDE (Project 601)
USING SUGARBEET CLONES TO PRODUCE SYNTHETIC LINES WITH resistance to rhizoctonia root rot D7
J.J. WEILAND AND G.A. SMITH (Project 610)
POLYMERASE CHAIN REACTION (PCR)-BASED DETECTION OF APHANOMYCES COCHLIOIDES USING ACTIN GENE SEQUENCES D10
J.J. WEILAND (Project 620)
THE DEVELOPMENT OF DYNAMIC GENE POOLS FROM BETA MARITIMA SOURCES D15
L.G. CAMPBELL (Project 630)
Crosses Between Released Fargo Lines and L19. D15
Crosses of Miscellaneous Wild Beta with Sugarbeet D16
Recent Introductions to the Breeding Program. D16
NOVEL FUNGAL PATHOGEN FOR THE BIOLOGICAL CONTROL OF THE SUGARBEET ROOT MAGGOT. D17
G.A. SMITH, J.J. WEILAND, AND J.D. EIDE (Project 642)
IDENTIFICATION OF THE SUCROSE METABOLIZING ENZYMES RESPONSIBLE FOR SUCROSE LOSSES DURING SUGARBEET DEVELOPMENT AND STORAGE. D22
K.L. KLOTZ

PUBLICATIONS

Abstract of papers Presented or Published

Campbell, L.G., A.W. Anderson, R. Dregseth, and L.J. Smith. 1998. Association between sugarbeet root yield and sugarbeet root maggot (Diptera: Otitidae) damage. Journal of Economic Entomology, 91:2: 522-527.

Abstract

Sugarbeet root maggot, Tetanops myopaeformis von Röder, is a major insect pest of sugarbeet throughout much of North America. Root maggot damage is routinely rated on a 0 (no damage) to 5 (severe damage) scale. Forty-two trials were utilized to examine the relationship between visual damage and root yield. The mean damage rating in the absence of insecticides was 3.3 , compared to 1.7 for the highest yielding treatment in each trial. Mean root yield of the highest yielding treatment in each trial was 48.8 per hectare, compared to a mean of 29.0 Mg ha ${ }^{-1}$ per hectare, when no insecticides were applied. Regression analyses within individual trials indicated that the yield loss associated with each increment of the damage rating scale fluctuated widely, ranging from near zero to $15.7 \mathrm{Mg} \mathrm{ha}^{-1}$. The percent yield reduction in the absence of insecticides ranged from 9.8% to 83.6% when compared to the treatment providing the most effective control in each test. These results are useful in estimating losses, developing recommendations, and providing a standard of comparison for alternative control strategies.

Campbell, L.G., G.A. Smith, J.D. Eide, and L.J. Smith. 1999. Sugarbeet root maggot control with Metarhizium anisopliae. 1998 Sugarbeet Research and Extension Reports, Cooperative Extension Service, North Dakota State University, 29: 222-226.

Only a few insecticides are available for controlling the sugarbeet root maggot (Tetanops myopaeformis). These could become less effective because of the development of resistant root maggot strains or become unavailable because of environmental concerns. An effective biocontrol agent would provide an alternative and, perhaps, more consistent control method. Laboratory results and a 1995 field trial prompted further testing of the entomopathogenic fungus Metarhizium anisopliae (Metschn.). Metarhizium inoculum was prepared by culturing the fungus on heat-killed barley. The inoculated barley was spread evenly over field plots in the fall proceeding the sugarbeet crop, in the spring prior to planting, or both in the fall and spring. Root yields ranged from $49.5 \mathrm{Mg} \mathrm{ha}^{-1}$ when no insecticide was applied to $59.2 \mathrm{Mg} \mathrm{ha}^{-1}$ when Lorsban (chlorpyrifos) was used to control maggots. The fall, spring, and fall plus spring applications of Metarhizium yielded $51.5,50.9$, and 58.9 Mg ha ${ }^{-1}$, respectively, at Crookston in 1996. The 1997 trials included the same three Metarhizium treatments with an additional application of Metarhizium in the spring
of 1996 (prior to planting barley). Root yields for the Metarhizium treatments ranged from 51.4 to $57.5 \mathrm{Mg} \mathrm{ha}^{-1}$, compared to $57.6 \mathrm{Mg} \mathrm{ha}^{-1}$ when Lorsban was applied and $48.7 \mathrm{Mg} \mathrm{ha}^{-1}$ in the absence of maggot control in 1997. Yield differences between treatments were not significant in 1998 because of reduced root maggot pressure, but appeared to follow the pattern observed in the 1996 and 1997 trials. Results, to date, have been encouraging; however, additional information on application rates and timing, formulations, and the effectiveness of Metarhizium in more environments will be required before commercialization is feasible.

Campbell, L.G., and C. StaelVonHolstein. 1999. Storage Respiration of Roundupready sugarbeet hybrids. 1998 Sugarbeet Research and Extension Reports, Cooperative Extension Service, North Dakota State University 29: 299-300.

The feasibility of using broad spectrum herbicides to control weeds in sugarbeets has been demonstrated and will most likely become a commercial reality very soon. Transgenic sugarbeets with resistance to some of these herbicides promise to simplify weed control while having few negative effects. Understanding the impact, if any, of introduced genes on traits not related to herbicide response is important to producers, processors, and regulators and for public acceptance of food derived from transgenic crops. The ability to retain sugar during storage is important to sugarbeet processors. Respiration that occurs while the beets are awaiting processing is responsible for $50-70 \%$ of the sugar loss that occurs during storage. The objective of this study was to determine if the alien gene that provides Roundup resistance affects respiration during storage. Respiration rate was determined by measuring the carbon dioxide production of sugarbeets stored for 30 days at $40^{\circ} \mathrm{F}$. A lack of significant differences between the non-transgenic hybrid and its transgenic counterpart when both received conventional herbicides indicates the gene conditioning resistance to Roundup is neutral in its effects upon respiration of sugarbeets. Near equality of conventional herbicides and Roundup treatments when applied to the transgenic beets indicated that the application of Roundup had no effect on storage respiration.

Campbell, L.G., G.A. Smith, H.A. Lamey, and A.W. Cattanach. 1998. Cercospora beticola tolerant to triphenyltin hydroxide and resistant to thiophanate methyl in North Dakota and Minnesota. Journal of Sugar Beet Research, 35:29-41.

Triphenyltin hydroxide (TPTH) has been used extensively for control of Cercospora (Cercospora beticola)leaf spot of sugarbeet (Beta vulgaris) in Minnesota and North Dakota following the development of benzimidazole resistant strains in the early 1980s. The discovery of tolerance to TPTH in 1994 prompted extensive sampling throughout the region in 1995 and 1996. In 1995, 60% of the leaf spots in the southern most district were tolerant to 0.2 ppm TPTH and 42% tolerant to 1 ppm . By 1996 these frequencies had increased to 83 and 60%, respectively. More alarming than this increase in the southern district was the rapid increase in the occurrence of
tolerance further north where the disease is generally less severe and fungicide use is less. In four of the seven factory districts the frequency of leaf spots tolerant to 0.2 ppm exceeded 35% and the frequency tolerant to 1 ppm was greater than 15%, in 1996. Resistance to thiophanate-methyl, a benzimidazole-type fungicide, persisted in local populations even though TPTH has been the predominant fungicide for control of Cercospora leaf spot for about 15 years.

Weiland, J.J., and G.A. Smith. 1999. Survey for the prevalence and distribution of Cercospora beticola tolerant to TPTH and resistant to Topsin M in 1998. 1998 Sugarbeet Research and Extension Reports, Cooperative Extension Service, North Dakota State University, 29:289-291.

Triphenyltin hydroxide (TPTH) has been used extensively in the Northern Great Plains in recent years for the control of Cercospora leaf spot on sugarbeet. Although mancozeb and, to a lesser extent, the benzimidazole fungicides often are implemented in conjunction with TPTH for optimum leaf spot control, TPTH continues to be the most widely used compound for control of the disease. Testing in our USDA-ARS Fargo laboratory of Cercospora that was isolated from leaf spot in the sugarbeet fields in North Dakota and Minnesota for the tolerance or resistance to fungicides first revealed tolerance to TPTH in 1994. The testing program has continued to the present and includes, for the first time, extensive surveying for tolerance to mancozeb. As in previous years, fields in the southern Minnesota growing region and in all factory districts from Wahpeton to Drayton in the Red River Valley were surveyed. Samples were tested for resistance to thiophanate methyl (TM; a benzimidazole fungicide) and for tolerance to TPTH and mancozeb at two different exposure levels.

CHARACTERIZATION OF GENE AND GENE PRODUCTS INVOLVED IN CERCOSPORA RESISTANCE IN SUGARBEET

 Project 601

 Project 601}

G.A. Smith, J.J. Weiland and J. D. Eide

Cercospora leaf spot continues to be one of the most serious diseases affecting sugarbeet. The disease, caused by the fungal pathogen Cercospora beticola, costs the sugarbeet industry millions in losses annually. Concerns have been raised about the rapid development of Cercospora strains resistant or tolerant to currently used fungicides. This underscores the need for continued research and development of new sources of Cercospora resistance in sugarbeet. We have obtained Nterminal sequence of a previously-uncharacterized glucanase from sugarbeet and are studying the role of sugarbeet hydrolases, glucanases, and other enzymes involved in Cercospora resistance. Regulatory studies on these proteins coupled with new selection techniques would enhance and accelerate the development of new Cercospora resistant sugarbeets. In addition, hyper-expression of these hydrolases in transgenics may provide increased leaf spot resistance.

The glucanase gene and gene products involved in Cercospora resistance are being examined. Previously a 26 kD glucanase was purified by chromatography and electrophoresis. The glucanase protein was transbloted to PVDF membrane for amino acid sequencing. The N -terminal amino acid sequence is as follows: H2N- Thr Thr Phe Thr Val Val Asn Asn Cys Gln. A search of Genbank suggested that this is a new antifungal protein. Similarities were found between this sequence and that of the antifungal peptides avematin and osmotin-like protein. We have used this sequence to construct PCR primers for the detection of antifungal genes in sugarbeet. The primers 26 KD fwd1 (5^{\prime} TCTAGAATTCACIGTIGTIAACAACTGCCA3') and 26 kDrev 1 (5^{\prime} CCTAGGATCCTTTTTTTTTTTT 3^{\prime}) and thirteen new arbitrary primers were obtained and are being tested. These primers were used in the PCR to amplify a 800 bp and 550 bp fragment using DNA from the leaf spot resistant germplasm accession 891021 H 2 . These fragments were cloned and sequenced. These sequences will be useful for mapping of sugarbeet antifungal genes, some of which already may contribute to Cercospora resistance in resistant varieties.

RNA has been isolated from leaf spot resistant and leaf spot susceptible material with or without Cercospora infection. This RNA was used for Reverse Transcriptase-PCR(polymerase chain reaction). The following primers were used for the reverse transcriptase process, $\mathrm{H}-\mathrm{T}_{11} \mathrm{~A}, \mathrm{H}-\mathrm{T}_{11} \mathrm{G}$, $\mathrm{H}-\mathrm{T}_{11} \mathrm{C}$ and 26 kDrev 1 . This RNA will also be useful for the study of transcriptional regulation of this gene and for construction of a cDNA library. As other pathogenesis related proteins are detected they will be cloned from the same cDNA library.

USING SUGARBEET CLONES TO PRODUCE SYNTHETIC LINES WITH RESISTANCE TO RHIZOCTONIA ROOT ROT
 Project 610

J.J. Weiland and G.A. Smith

Methods for the evaluation of sugarbeet for resistance to root rot caused by Rhizoctonia solani AG22 presently involve the generation of disease in replicated field plots. The development of a resistance screening method that could be performed in the growth chamber or greenhouse would enable researchers to evaluate candidate breeding lines for levels of resistance before use in test hybrids. In recent years, the ARS lab in Fargo has refined a technique for the inoculation and rating of young roots with R. solani AG2-2. A protocol is presented that permits roots of test germplasm to be evaluated at 8 weeks post-seeding. Ranking of test germplasm according to levels of disease was similar to that observed for the performance of the accessions in the root rot disease nursery at Fort Collins, CO.

This report summarizes the results of multiple trials involving germplasm accessions FC709-2 (highly resistant), FC718 (resistant), FC907 (moderately susceptible), FC403 (highly susceptible) and the hybrid, Maribo 'Ultramono' (highly susceptible). Release FC709-2 has exhibited extreme resistance to root rot over several years of testing in the Rhizoctonia nursery at Fort Collins, CO. Inoculum used in the study was R. solani AG2-2, which is the same isolate used in inoculation of the field nursery.

The techniques for inoculation and plant rating are as follows. Briefly, one or two sugarbeet plants are grown in $6^{\prime \prime}$ pots to the 5 week-old stage in a greenhouse that is maintained at an average temperature of $25^{\circ} \mathrm{C}$ and alternating between a 16 hr day period and an 8 hour dark period. Since 50 roots are inoculated per trial, the rearing of at least 60 plants is recommended. Two weeks prior to plant inoculation, R. solani AG2-2 is plated onto potato dextrose agar and incubated at $22^{\circ} \mathrm{C}$ in the dark. One week prior to inoculation, sterile barley grain is sprinkled onto the plated R. solani culture and the plates are sealed with Parafilm and returned to the incubator. The barley grains become infested with the fungus within one week. For the inoculation, two infested barley grains are place next to the root surface of a 5 week-old sugarbeet plant at $\sim 2 \mathrm{~cm}$ below the surface of the soil. The soil is replaced over the grain inoculum and the plants are watered immediately after all of the plants have been inoculated.

One week after inoculation, plants of a highly susceptible check accession or variety are examined at 3 -day intervals in order to monitor disease progress. When greater than 50% of the roots of this accession exhibit severe root rot ($>90 \%$ of root surface exhibiting rot), all of the roots in the experiment are dug up and rated for root rot severity. This typically occurs at about 14 days postinoculation. A 0 to 4 scale is used for evaluating root rot severity, where a plant exhibiting no disease is considered a 0 reaction, a root lesion effecting 10% or less of the root surface is a 1 reaction, a root lesion covering $11-50 \%$ of the root surface is a 2 reaction, root rot covering $51-89 \%$ of the root surface is a 3 reaction, and rot on $>90 \%$ of the root surface or the plant is dead represents a 4 reaction. By multiplying the data by $7 / 4$, a comparison can be made between the data obtained using the $0-4$ scale with that using the $0-7$ scale employed at the Fort Collins disease nursery.

The results in Table 1 are for a minimum of 50 roots tested per accession per trial. Ranking of the germplasm accessions according to percent healthy roots and disease index clearly was similar to that for the same accessions in the root rot nursery at Fort Collins, CO. Mean DI ratings for accessions FC 907 and FC 718 , which exhibit moderate resistance, varied the greatest between experiments. Consistently low DIs were observed for the highly resistant accession FC709-2, in agreement with the performance of this accession in the field nursery. Accession FC403, produced from parents having resistance to beet curly top virus, exhibits poor resistance to root rot in the field. This is revealed in the inoculations of greenhouse-grown plants as well.

The results validate the evaluation of root rot resistance by inoculation of greenhouse-grown sugarbeet roots at 5 weeks of age. It is stressed that both highly resistant and highly susceptible check accessions or varieties always should be included in the study as experimental controls. Seed from a mapping population developed by J.M. McGrath (ARS-East Lansing) and segregating for resistance to Rhizoctonia root rot will be evaluated in 1999 using the greenhouse method. Highly resistant and highly susceptible progeny from the cross will be used to identify molecular genetic markers that co-segregate with root rot resistance. Use of such markers could significantly reduce costs in a breeding program, by substituting marker detection for disease screening.

Greenhouse Experiments											Field Nursery							
Disease rating											FC'94		FC'95		FC'96		FC'97	
mplasm accession or	r hyb	brid	0	1	2	3	4	Total	\% hlthy ${ }^{1}$	DI ${ }^{2}$	\% hlthy $(86 / 5)^{3}$	$\frac{\text { DI }}{(1.0 / 4.9)}$	\% hlthy (64/2)	$\frac{\mathrm{DI}}{(1.3 / 4.5)}$	\% hlthy $(100 / 30)$	$\begin{gathered} \text { DI } \\ (0.9 / 2.9) \end{gathered}$	\% hilthy (49/0)	$\begin{gathered} \text { DI } \\ (2.5 / 6.7) \end{gathered}$
Maribo 'Ultramono'	0	2	7	20	21		50	4	5.6									
FC604	0	4	7	13	26		50	8	5.6	15	4.8							
FC403	2	1	3	7	37		50	6	6.2			12	3.1					
FC907	3	9	2	7	29		50	24	5.3			11	3					
FC718	14	28	3	2	3		50	84	1.6	75	1.4	61	1.5	80	1.3			
FC709-2	29	9	5	6	1		5	76	1.4	86	1	55	1.3	100	0.9	49	2.5	
Maribo 'Ultramono'	0	1	1	0	58		60	2	7									
FC403	2	3	2	14	45		66	8	6.1									
FC907	0	2	1	1	56		60	3	6.7									
FC718	5	16	3	4	32		60	35	4.7									
FC709-2	51	3	3	0	0		57	90	0.3									
Maribo 'Ultramono'	0	0	1	7	32		40	0	6.6									
FC403	1	1	0	0	36		38	5	6.7									
FC907	8	2	5	20	5		40	25	4									
FC718	7	11	9	3	10		40	45	3.9									
FC709-2	21	10	2	3	3		39	80	1.6									

[^9]
POLYMERASE CHAIN REACTION (PCR)-BASED DETECTION OF APHANOMYCES COCHLIOIDES USING ACTIN GENE SEQUENCES Project 620

J.J. Weiland

A number of soil fungi have the capability to cause disease in sugarbeet and these include Rhizoctonia solani, Aphanomyces cochlioides, Pythium aphanidermatum, P. ultimum, and Fusarium oxysporium. When seedling damping off or adult plant root rot occur, diagnosis of the causal agent of the disease can be a time-consuming process (days to weeks). Culture of the organisms from an infected area of the sugarbeet root can lead to the recovery of a plethora of fungi, many of which have colonized the infected tissue as saprophytes.

The polymerase chain reaction (PCR) is a DNA based technique for amplifying specific sequences from the genomes of organisms. PCR technology has impacted many fields of biology, including the area of disease diagnosis in both plants and animals. Diagnostics using the PCR are sensitive and highly discriminatory, since they target genome regions whose DNA sequences have diverged throughout evolution. PCR-based diagnostics also require little time for a result to be secured (within one to two days), making them attractive to high-throughput diagnostic laboratories.

The interests in our laboratory include the development of novel diagnostic tools for disease-causing fungi in sugarbeet, as well as the development of tools for investigating the biochemistry of sugarbeet pathogenesis by fungi. For this reason, we designed our PCR assay for the discrimination of sugarbeet fungal pathogens upon DNA sequences of the actin gene. Actin is a protein found in all eukaryotes and the gene coding for actin possesses sequence blocks of both high similarity, as well as of high divergence, across all eukaryotes. This facilitates the design of DNA "primers" that recognize the highly similar sequences in order to detect potential size variation in the actin gene that can be used to "fingerprint" and discriminate one sugarbeet pathogen from another. Actin is also a highly expressed gene and the cloning and re-engineering of actin gene sequences might provide a useful tool for gene transfer studies with sugarbeet fungal pathogens.

In 1998, the PCR discrimination was tested for the ability to distinguish A. cochlioides from the common legume pathogen, A. euteiches. Since sugarbeet can be grown in rotation with, or in close proximity to, dry bean, alfalfa, and other legumes, it is important to be able to distinguish these two pathogens. Primers based on the actin gene when used in the PCR amplify a product from A. cochlioides that is indistinguishable from that amplified from A. euteiches. Digestion of the amplified product with restriction endonucleases that possess 4 -base recognition sequences, however, generates a fingerprint that clearly distinguishes the two pathogens (Fig. 1). It is proposed that sufficient divergence between the two pathogens has occurred that is reflected in sequence, but not size, variation in the actin gene. The nucleotide substitutions that reflect this divergence in the actin gene will be analyzed by DNA sequencing in 1999. New primers then will be synthesized that permit the two pathogens to be distinguished without the need for pathogenicity testing.

Experimental controls where PCR with the actin gene primers was applied to sugarbeet DNA indicated that, using primer annealing conditions that permit the amplification of actin sequences
from A. cochlioides, no products were produced from sugarbeet DNA. From this information, I decided to test the ability for the PCR to detect A. cochlioides in diseased sugarbeet seedlings, without prior culture of the fungus. The results in Figure 2 clearly demonstrate that A. cochlioides can be detected in diseased seedlings, where as no DNA amplification was apparent for samples prepared from healthy seedlings harvested in the same trial. These results hold promise for the development of rapid diagnostics for the identification and sensitive detection of fungal pathogens in diseased sugarbeet tissues. Ultimately, protocols will be produced for the detection of pathogens in the soil.

Figure 1

Figure 1. Amplification of actin gene sequences from A. cochlioides and A. euteiches and DNA fingerprint profiles produced by amplified product digestion. In the top panel, 3 isolates each of A. cochlioides and A. euteiches were sources of DNA for the amplification by PCR of actin gene sequences using the primers 5FWDACT and MIDREVACT. Products from the amplification were separated on a 1% agarose gel, stained with ethidium bromide and photographed. Note that the size of the products is indistinguishable using this detection system. In the bottom panel, a subset of the products show in the top panel were digested with a mixture of the restriction endonucleases $A l u 1$, Hae III, and Msp 1. Digested products were fractionated on a 5% polyacrylamide gel, stained with ethidium bromide, and photographed. Note the DNA fingerprint pattern consistency within the A. euteiches isolates and how this pattern differs from that generated by the A. cochlioides isolate Russ 2 A .

Figure 2. Detection of A. cochlioides in diseased sugarbeet seedlings. Extracts from healthy and diseased seedlings of sugarbeet 'Ultramono' were added to reaction mixes for PCR amplification. Primers 5FWDACT and MIDREVACT, which are targeted to the actin gene of A. cochlioides were used in the reaction. Products of the amplification were separated on a 1% agarose gel containing Tris-borate EDTA buffer. Products were stained with ethidium bromide and photographed. The amplified product in the diseased sample lanes is of the same size as that amplified from the DNA prepared from pure cultures of A. cochlioides. The 1 kb marker ladder (Life Technologies, Inc.) was co-electrophoresed as a size standard.

THE DEVELOPMENT OF DYNAMIC GENE POOLS FROM bETA MARITIMA SOURCES
 Project 630

Larry G. Campbell

Since heterosis generally is enhanced by increasing the genetic diversity of the parents, the introduction of desirable germplasm from previously unused sources is essential to the success of long-range hybrid development programs. Because of its background and the need for specific characteristics such as cytoplasmic male sterility, monogerm, and different disease resistances, the sugarbeet breeding pools are believed to be genetically limited. Although there appears to be sufficient variability for short term gains, long term progress may very well depend upon the infusion of additional variation into the crop.

Potential sources of genetic variation not now being utilized fully include 1) old land races of sugarbeet, table beet, and fodder beet; 2) new naturally occurring or induced mutations; and 3) wild relatives. New sources of genetic variation should produce fertile offspring when crossed with sugarbeet and be genetically unique and diverse, compared to commercial sugarbeet. Of the wild relatives, Beta maritima best fits these criteria. In its native habitat, B. maritima persists in numerous environments. Its adaptation to this range of environments has resulted in the accumulation of stress response traits different from cultivated beet. Over the past 20 years many representatives of this species have been collected, preserved, and made available to breeders. Several breeders (Manerati, Dahlberg, Lewellen, and Doney) have successfully incorporated genes from this wild form into sugarbeet.

The objective of this research project is the development of populations that incorporate some of the genetic diversity from wild Beta into sugarbeet. The goal is to produce populations with root characteristics and sucrose concentrations similar to commercial sugarbeet.

Crosses Between Released Fargo Lines and L19

Y317, y318, y322, and y387 are released germplasms all derived form the cultivated / maritima cross, L53 / PI 546420. PI 546420 was collected near Thessaloniki, Greece in 1978. It is a multigerm, non-O type, annual with prostrate growth habit. Testcross hybrids between the released lines and L33 were deficient in sucrose concentration, compared with commercial hybrids. Because of this it was decided to cross the above germplasm lines to L19. L19 is noted for its ability to produce hybrids with relatively high sugar concentrations. Its parentage includes the Polish variety 'Udyca'.

Fifty-six families (entries) were grown at Prosper, North Dakota in 1996 Each entry traced back to a single selfed F_{1} plant with the pedigree: L53cms / PI $546420 / /$ L19.. These families had an average sugar content of 13.3%; ranging from 8.4 to 15.9%. Recoverable sugar per ton of beets ranged from slightly below 100 to 298 lbs . per ton with an average of 237 lbs . per ton.

Individual roots of all entries were sampled for sucrose concentration. The mean of the 842 roots sampled was 14.56%. Entry means of the 56 entries ranged from 10.7 to 17.1% sugar. Selection was based upon both family mean and individual root sucrose within a family. The selected families had means greater than 14.4%. Individual root sucrose concentrations ranged from 7.4 to 19.4% prior to selection. Selected roots ranged from 14.6 to 19.4% with a mean sugar percent of 16.1% or 1.6% higher than the unselected roots. 339 roots from 30 entries were selected for increase.

Each of the 30 selected entries was maintained as an entity. Eight to 15 roots were selected from each entry for increase in the greenhouse (1997). Seed from plants within an entry (average of 11 plants / entry) was bulked for testing in replicated field tests in 1998. Data from the 1998 trial was of limited value because of conditions related to the extremely wet spring of 1998 . These 30 families will be evaluated in replicated trials again in 1999.

Crosses of Miscellaneous wild Beta with Sugarbeet

The sugarbeet parent in these crosses was a Califormia line (3747) segregating for genetic male sterility. Crosses were made on male sterile segregates. In subsequent intercrosses, seed was harvested from male sterile segregates to maintain the sterility and insure intercrossing. After two cycles of random intercrossing all populations were grown in a space planted nursery and selected for root shape. Lines that performed well in testcrosses (L33cms) in 1996 were increased and evaluated again in replicated trials in 1997. Eleven of the 18 lines tested were increased in the summer of 1998. These will be evaluated as lines in replicated trials in 1999. Some will be examined in testcross hybrids and others used as parental material in the formation of new populations.

Recent Introductions to the Breeding Program

Population were formed by crossing a self incompatible sugarbeet line from California (R376-43) with thirty-seven wild Beta accessions from the United Kingdom, France, Ireland, Denmark, Belgium, and the Channel Islands. Ten plants from each wild accession were crossed (as pollinators) individually to $\mathrm{R} 376-43$. Ten F_{1} plants from each cross (100 plants) were intercrossed to produce the F_{2} generation. Equal numbers of seeds from each F_{2} plant were grown and intercrossed to produce the F_{3} seed. Selection for root shape was initiated with the 1998 crop. Selected plants are now being increased in the greenhouse to produce seed for a second cycle of selection for root shape in 1999.

NOVEL FUNGAL PATHOGEN FOR THE BIOLOGICAL CONTROL OF THE SUGARBEET ROOT MAGGOT
 Project 642

G.A. Smith, J.J. Weiland, and J.D. Eide

Current methods for detection and identification of entomopathogenic fungi are laborious and time consuming, and identification of different strains of the same fungal species is even more difficult. Attempts at the genetic characterization of Metarhizium anisopliae (Metschnikoff) Sorokin have included the use of randomly amplified polymorphic DNA (RAPD), restriction fragment length polymorphism analysis (RFLP) analysis, and others. These studies have met with limited success. M. anisopliae have been collected for studying genetic polymorphisms using rRNA analysis and mtDNA RFLP. The objective of this study was to prepare PCR (polymerase chain reaction) primers specific for the detection of strains of M. anisopliae that are pathogenic to the sugarbeet root maggot. The entomopathogenic fungi examined in this study included Beauveria bassiana, Cordyceps militaris, Hirsutella thompsonii, M. anisopliae, M. flavoviride, Syngliocladium tetanopsis and Verticillium lecanii. In addition, the following ATCC strains of Metarhizium were used: ARST1 (fungi re-isolated from third instar sugarbeet root maggots inoculated with M. anisopliae 22099), $16085,38630,56096,62176,60335$ and 32969 . All fungal cultures were grown in 50 ml of 1% peptone, 2% dextrose broth. The DNA was extracted from each and PCR was carried out using standard procedures in a Perkin Elmer thermocycler. The PCR products were separated in agarose gels. The DNA fragments were cloned into an Invitrogen plasmid pCR2.1 and the resulting plasmid transformed into Escherichia coli TOP10F's using the manufacturer instructions. Plasmid DNA was isolated using an alkaline lysis PEG 8000 precipitation method. DNA was sequenced at the Iowa State University DNA Sequencing facility.

PCR primers specific for the 5 ' end (5FWDACT) and 3^{\prime} end (MIDREVACT) of the actin gene coding sequence were synthesized. These primers were used in the PCR to amplify a $1.3-\mathrm{kb}$ DNA fragment in M. anisopliae ARS-T1 and five other M. anisopliae strains (Fig. 1). These same primers detected a $1.2-\mathrm{kb}$ fragment in the entomopathogenic fungi B. bassiana, C. militaris, H. thompsonii, and V. lecanii. Digestion of the 1.3 kbp PCR actin products with $A c i$ I, Alu I and Sau 3A I showed variation between Metarhizium strains (Fig. 2). The M. anisopliae fragments were cloned and both strands sequenced. In order to obtain the complete nucleotide sequence two primers internal to the $1.3-\mathrm{kb}$ actin fragment were synthesized. These primers were used in the PCR with M. anisopliae DNA and amplified a $450-\mathrm{bp}$ fragment that was cloned and sequenced. The intron sequences are being examined for unique sequences specific for M. anisopliae. The rRNA genes of these fungi also are being examined for the presence of distinguishing sequence characteristics. Two primers, ITS1 and ITS4 specific for the ITS (Internal transcribed spacers) region of the nuclear rRNA gene were synthesized. Use of these primers in the PCR with M. anisopliae DNA produced a $600-\mathrm{bp}$ fragment(Fig. 3). We have also synthesized two primers E24 and PN29 for use in amplification of the 28 S rDNA. The primers amplified a $1.1-\mathrm{kb}$ fragment from DNA of M. anisopliae in all strains tested except ATCC 38630. These primers amplified larger fragments of approximately 2 kpb in C. militaris, B. bassiana and V. lecanii. S. tetanopsis produces a 500 bp fragment with the E24 and PN29 primers. This fragment contains group I introns which have been useful for differentiating between strains of entomopathogenic fungi. Use of PCR with the above sets of primers will help

New strains of M. anisopliae are being tested as a biocontrol agent for control of Tetanops myopformis (Sugarbeet Root Maggot). Loss of chemical controls and variable results with chemical controls led us to examine biological control measures. Our previous studies have shown the efficacy of the entomopathogenic fungi ARS-T1 (M. anisopliae) on first instar SBRM (Sugarbeet root maggot), third instar SBRM and adult flies.

We are continuing to examine long-term viability of B. bassiana and M. anisopliae. The fungi are stable under many types of storage conditions tested to date(table 1).

Production of M. anisopliae conidia on heat killed barley is being fine tuned. We have been able to produce conidia on heat killed barley with two strains of M. anisopliae. A different strain of M. anisopliae with better laboratory efficacy is being produced for field application. This strain is being produced with a cooperator as a granular and a sprayable powder for field application in 1999. This strain of M. anisopliae (62176) can produce over 10^{8} conidia per petri plate. We have previously shown that field efficacy can occur at 10^{13} conidia per acre.
Production of conidia and blastospores using air batch cultures and fermentation is also being examined. This will facilitate application technologies for delivery of M. anisopliae in a practical and economically feasible method to grower fields.

Table 1. Viability of B. bassiana and M. anisopliae under different temperature regimes $(+=$ still viable, $-=$ not viable, $\mathrm{Nd}=$ not determined $)$.

Fungus Tested and Temperature		Months							
M. anisoplaie	$20^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$	+	+	+	+			
$"$	$-80^{\circ} \mathrm{C}$	+	+	+	Nd	+			
$"$	$20^{\circ} \mathrm{C}$	+	+	+	Nd	+			
B. bassiana	$-20^{\circ} \mathrm{C}$	+	+	+	+	-			
$"$	$-80^{\circ} \mathrm{C}$		+	+	+	Nd			
$"$		+	+	+	Nd	+			

Fig. 1. A 1% agarose gel showing PCR products produced with 5 fwdact \& midrevact primers using entomopathogenic fungal DNA. The PCR reaction conditions were $94^{\circ} \mathrm{C} 2 \mathrm{~min}$. followed by 40 cycles of $94^{\circ} \mathrm{C} 1 \mathrm{~min}, 37^{\circ} \mathrm{C} 1$ min . and $72^{\circ} \mathrm{C} 2 \mathrm{~min}$., then $72^{\circ} \mathrm{C}$ for 7 min . Two microliters of PCR product was loaded per lane. Ten microliters of a 1 to 20 dilution of std DNA was loaded on opposite ends of the gel.

Fig. 2. A 3\% MetaPhor agarose gel with PCR products of 5 fwd and midrev actin primers digested with Aci I, Alu I and Sau 3AI. The PCR reaction conditions were $94^{\circ} \mathrm{C} 1 \mathrm{~min}$., then $94^{\circ} \mathrm{C}, 30 \mathrm{sec}, 40^{\circ} \mathrm{C} 2 \mathrm{~min} ., 72^{\circ} \mathrm{C} 30 \mathrm{sec}$ for 40 cycles followed by $72^{\circ} \mathrm{C}$ for 7 min . A total of 25 microliters was loaded per lane. Ten microliters of a 1 to 10 dilution of 100 bp standard was loaded as a marker.

Fig. 3. A 1% agarose gel showing PCR products produced with rRNA primers ITS1 \& ITS4 using entomopathogenic fungal DNA. The PCR reaction conditions $94^{\circ} \mathrm{C} 1 \mathrm{~min} .94^{\circ} \mathrm{C}$ then 40 cycles of $94^{\circ} \mathrm{C} 1 \mathrm{~min}$., $45^{\circ} \mathrm{C} 1 \mathrm{~min}$., $72^{\circ} \mathrm{C} 2 \mathrm{~min}$. followed by $72^{\circ} \mathrm{C}$ for 5 min . Ten microliters of the reaction was loaded on to gel.

IDENTIFICATION OF THE SUCROSE METABOLIZING ENZYMES RESPONSIBLE FOR SUCROSE LOSSES DURING SUGARBEET DEVELOPMENT AND STORAGE

K.L. Klotz

Optimizing sucrose accumulation in the sugarbeet root and preventing sucrose degradation during sugarbeet root storage are important for the profitability of the sugar industry. The accumulation and maintenance of high sucrose levels in roots benefit the grower and processor alike. Labor, capital and transportation costs decrease with increased sugar content. Processing losses also decline when a high sucrose content is obtained and maintained. High sucrose content is positively correlated with better storage and processing characteristics. Maintaining a high sucrose content is also important since degradation of sucrose to the invert sugars, glucose and fructose, increases color formation during extraction and causes the loss of sucrose to molasses during crystallization.

While the importance of producing a sugarbeet root that can accumulate and maintain high sucrose levels is well recognized, our understanding of the biochemical and physiological processes involved in obtaining such a sugarbeet is limited. The enzymes involved in sucrose formation and degradation are well known. Sucrose is synthesized in the leaves by sucrose phosphate synthase and sucrose phosphatase. Sucrose not needed by the leaf for its own metabolic needs is transported through the plant's vascular system upward to the growing shoot tip or down into the root. In the root, sucrose may be catabolized to provide for the root's energy and material needs or it may be sequestered in the vacuole of root parenchyma cells for storage. Three major enzymes are responsible for sucrose catabolism in the root. They are the acid invertases, alkaline or neutral invertases and sucrose synthase. It is the objective of ongoing and future research at the USDA/ARS Northern Crop Science Laboratory in Fargo, ND to understand the function of these sucrose catabolizing enzymes in sugarbeet roots and determine their contribution to sucrose losses during root development and postharvest storage.

The biochemistry of the sucrose catabolizing enzymes is well known. The invertases catalyze the hydrolysis of sucrose to glucose and fructose. Invertases are classified according to their pH optimum for activity. The acid invertases exhibit optimal enzyme activity at $\mathrm{pH} 4.5-5.0$. They are found in the vacuole or the cell wall where they can be insolubilized by ionic bonds. Neutral or alkaline invertases exhibit greatest activity at $\mathrm{pH} 7.0-8.0$ and are localized in the cytoplasm. Generally, acid invertase activity is associated with young growing tissues. Neutral or alkaline invertase activity is typically low in young tissues and increases with tissue maturity. Sucrose synthase is the third major sucrose catabolizing enzyme. Sucrose synthase catalyzes the reversible transfer of a glucose residue from sucrose to uridine diphosphate (UDP) to produce fructose and UDP-glucose, a metabolically active form of glucose. Sucrose synthase activity is localized in the cytoplasm and is positively correlated with sink strength.

Although the biochemistry of the sucrose catabolizing enzymes is well defined, their function in sugarbeet sucrose metabolism is uncertain. Many studies have attempted to define their role in the sugarbeet root by correlating enzyme activity with sucrose content or sucrose losses. The results from these studies, however, have often been ambiguous and contradictory. The very nature of the
sucrose catabolizing enzymes may be responsible for the difficulty in determining their function. In nearly all plants, invertase and sucrose synthase occur not as single enzymes, but as families of isoenzymes. Isoenzymes within a family typically exhibit different patterns of expression, and often exhibit different reactivities toward substrates and products. Different isoenzymes are important at different developmental stages and are thought to have separate functions in the plant. Previous studies into the role of the sucrose catabolizing enzymes have relied almost exclusively on enzyme activity assays. These assays measure total activity for an enzyme family, but are unable to differentiate the activity of individual isoenzymes. This experimental approach has probably contributed to the uncertainty over the function of these enzymes.

At the NCSL, studies are underway to determine the role of the individual isoenzymes of acid and alkaline invertase and sucrose synthase in sucrose losses. The activity of individual isoenzymes of the sucrose catabolizing enzymes is being determined throughout sugarbeet root development and postharvest storage under favorable and unfavorable conditions. The levels of these isoenzymes will be correlated with changes in root carbohydrate content and respiration rate. Sucrose, glucose and fructose levels at all stages of growth and storage will be measured as well as the respiration rate of roots in postharvest storage. Future studies will also correlate steady state transcript levels for the individual isoenzymes with changes in carbohydrate content and respiration rate. These studies should provide clues to the importance of different isoenzymes in sucrose losses during growth and postharvest storage. Comparison of enzyme activity and steady state transcription levels for the individual isoenzymes will also provide insights into their regulation.

It is hoped that the knowledge gained from these studies will aid in maximizing extractable sucrose from sugarbeet roots. An understanding of the contribution and regulation of the different sucrose catabolizing isoenzymes to sucrose losses may provide insights into changes in cultural or storage practices to enhance sucrose accumulation and preservation. Alternatively, these studies may identify specific isoenzymes whose expression could be altered by genetic engineering to increase extractable sucrose levels in sugarbeet roots.

SUGAR BEET RESEARCH 1998 REPORT

Section E

Sugarbeet and Bean Research Unit Agricultural Research Service, USDA

East Lansing, Michigan

Dr. J. W. Saunders, Research Geneticist, Plants
Dr. J. M. Halloin, Plant Physiologists
Dr. J. M. McGrath, Sugarbeet Geneticists

This research was supported in part by funds provided through the Beet Sugar Development Foundation (Projects 710, 720 and 721)

CONTENTS

Sugar beet activities of the USDA-ARS East Lansing conducted in cooperation with Saginaw Valley Bean and Beet Farm during 1998- Overview E3
Field Evaluation of Emergence I: Replicated Trials of a Range of Sugar Beet and Related Germplasm Trials of a Range of Sugar Beet and Related Germplasm by J. M. McGrath, C. A Derrico, Y. Yu and R. A. Kitchen E3
Field Evaluation of Emergence II: Replicated Tests of Identical Varieties Grown in Different Environments
by J. M. McGrath, C. A. Derrico, Y. Yu and R A. Kitchen E6
Agronomic Evaluation of Smooth Root Releases and Prospective Releases by J. W. Saunders, J. M. McGrath and R. A. Kitchen E 7
Agronomic Evaluation of Smooth Root Developmental Populations, Prospective Rhizoctonia Resistance Releases and Hybrids of 5P550 by J. W. Saunders, J. M. McGrath and R. A. Kitchen E9
In Vitro Systems for Sugarbeet Interaction with Rhizoctonia, Cercospera, Pythium and Aphanomyces Pathogens of Beet
by J. W. Saunders and P. S. Hudy E11
Notice of Release of SR95 Smooth Root Sugarbeet Germplasm El 4
Notice of Release of EL51 Sugarbeet Germplasm with Resistance to Rhizoctonia Crown and Root Rot E15
Use of Seed Mixtures of Rhizoctonia-Resistant and Susceptible Sugarbeet Varieties for Control of Crown and Root Rot.
by J. M Halloin and D. J. Johnson E17
Studies on Aphanomyces cochlioides seedling disease of sugarbeets. by D. J. Johnson and J. M. Halloin E19

Sugar beet activities of the USDA-ARS East Lansing conducted in cooperation with Saginaw Valley Bean and Beet Farm during 1998 OVERVIEW

The USDA-ARS conducted seven trials at the Bean and Beet Farm in 1998. Four of these trials were designed to examine seedling emergence and stand establishment. Two of these trials are reported here (Tests 9812 BB and 9813 BB). Of the other two trials not reported, one was a non-replicated observation nursery and one was a double-blind evaluation strictly for emergence performance. Two additional trials for agronomic evaluation of germplasm in development in the USDA-ARS East Lansing program were conducted, and these are reported here (Tests 9814 BB and 9815 BB). The final test was an attempt at developing an Aphanomyces nursery on the farm. From the standpoint of seedling disease, the test was not informative.

The 1998 sugarbeet field trials at the Bean and Beet Research Farm near Saginaw were planted in Range 8, tiers 7 through 10. This land had been in dry beans in 1997. The soil was prepared by fall plowing, followed by frost tillage in the early spring. Beets were planted on April 28, 1998. Pre-emergence herbicide (3 qt. Pyramin and 2 qt. Nortron SC per acre) was banded onto the rows immediately following seeding. Seed germination was not as good overall as observed in 1997. Plots were thinned to 6 to $8^{\prime \prime}$ between plants within the row and weeded by the second week of July, generally resulting in good plant stands after thinning and weed control. All experiments were machine harvested October 13 and 14, 1998. Sugar analysis was generously provided by the Michigan Sugar Co. sugar laboratory and their assistance is greatly appreciated.

All statistical analyses were performed with the aid of MSTAT and / or JMP. Differences between means were determined with Duncan's Multiple Range test, and judged significantly different by different letter suffixes following the means in the tables.

TEST 9812BB: FIELD EVALUATION OF EMERGENCE I: REPLICATED TRIALS OF A RANGE OF SUGAR BEET AND RELATED GERMPLASM

J. Mitchell McGrath, Cathy A. Derrico, Yi Yu and Richard A, Kitchen USDA-Agricultural Research Service, Cooperative with Department of Crop and Soil Sciences

The objective of this test was to examine field emergence in a range of sugar beet and related materials for eventual correlation with laboratory germination in aqueous solutions. The materials examined included four current commercial seedlots, four smooth-root germplasm releases (prefix SR), two obsolete USDA hybrids, one accession each of red beet, fodder beet and Swiss chard, 10 monogerm experimental hybrids and one line from USDA Salinas, CA. It is important to note that these accessions were a mix of both monogerm and multigerm seed. Emergence counts were taken five times during the emergence phase, beginning May 6, 1998, but only the last four readings are reported since few seedlings were evident on May 6 (<1 seeding per plot on average). Emergence values are reported in Table 1, with accessions arranged in order of increasing mean emergence over the whole test. Significant differences in emergence were observed, both within and among monogerm and multigerm accessions, however a great deal of variability was also evident despite eight replications of the trial.

Table 1: Mean emergence for Test 9812BB. Test was planted in four two-row experimental unit of 100 seeds per row, with each row treated as an independent replicate.

Entry	Type monogerm	May 8 6869	May 13	May 18	May 26	Mean	Std Dev
USH23	monogerm	20.6	29.5	20.6	22.1	17.3	7.8
576xHS	monogerm	12.5	35.4	27.6	26.5	21.1	12.8
657xHS	monogerm	21.6	40.8	38.4	34.3	25.7	9.6
BMCxHS	monogerm	28.3	41.6	42.1	38.1	33.8	8.5
ACH555	monogerm	19.5	48.4	44.6	39.6	38.0	6.4
B5931	monogerm	30.0	41.1	46.1	35.5	38.2	7.9
607x94HS25	monogerm	30.4	42.8	43.1	37.9	38.5	5.9
657x94HS25	monogerm	33.3	42.9	41.8	38.0	39.0	4.3
W357B	multigerm	21.1	51.0	46.0	40.8	39.7	13.1
H23xHS	monogerm	26.8	48.3	45.6	39.9	40.1	9.6
ACH185	monogerm	30.4	46.3	47.8	40.6	41.2	7.9
607xHS	monogerm	31.5	47.5	46.6	43.0	42.2	7.4
HME17	monogerm	36.1	53.4	51.0	44.4	46.2	7.7
657x94HS21	monogerm	42.9	49.0	48.6	48.7	47.3	3.0
USH20	monogerm	37.8	60.4	52.0	45.5	48.9	9.6
SR93	multigerm	47.5	60.3	54.4	47.0	52.3	6.3
CHARD	multigerm	30.3	55.9	68.8	56.6	52.9	16.2
607x94HS21	monogerm	48.4	58.3	57.0	52.4	54.0	4.5
SR80	multigerm	44.0	63.0	58.5	51.1	54.2	8.4
HS POLL (92HS25)	multigerm	45.0	80.1	76.5	57.8	64.8	16.5
Fodder (Mangle)	multigerm	59.4	109.1	88.8	74.0	82.8	21.2
SR87	multigerm	92.3	112.1	125.9	92.3	105.6	16.4
SR94	multigerm	103.5	123.3	148.5	84.9	115.0	27.3
CV (\%)		29	34	47	25		
LSD (0.05)		11.2	19.8	27.1	12.1		

Figure 1: Graphical representation of emergence over time.

An ancillary goal of this test was to determine agronomic performance of fodder beet (designated mangle in these experiments), red beet and Swiss chard in a sugar beet growing regime. Table 2 reports the combined agronomic results. Due to their small size, Swiss chard roots from all replicates were combined for sugar analysis. However, it is evident that the sucrose content of Swiss chard is comparatively high among non-sugar beet materials.
Table 2: Agronomic performance for Test 9812 BB arranged in order of decreasing RWSA.

Entry	RWSA		RWST		T/A		Suc \%		CJP \%		NH2	
B5931	7256	A	276.2	A	26.27	${ }^{\text {ABC }}$	18.83	A	94.46	A	154.3	DEF
HME17	7254	A	264.7	A	27.39	AB	18.27	A	93.98	ABC	179.3	CDEF
657x94HS21	6965	${ }^{\text {AB }}$	239.5	CD	29.10	A	17.06	BCD	92.84	ABC	221.0	BCDE
$657 \times 94 \mathrm{HS} 25$	6855	$A B C$	237.2	CD	28.89	A	16.98	BCD	92.61	ABC	220.8	BCDE
657xHS	6149	$A B C D$	224.2	CDE	27.43	AB	16.14	CDEF	92.52	ABC	222.8	BCDE
USH20	6084	ABCDE	235.9	CD	25.73	ABCD	16.39	CDEF	94.01	ABC	183.6	CDEF
ACH555	6015	ABCDEF	260.1	$A B$	23.05	BCDE	17.83	AB	94.43	AB	200.4	CDEF
H23xHS	5585	BCDEF	229.5	CDE	24.31	ABCDE	16.12	CDEF	93.62	ABC	181.5	CDEF
BMCxHS	5448	CDEFG	231.1	CDE	23.70	ABCDE	16.52	CDE	92.77	ABC	278.0	AB
607xHS	5198	DEFGH	231.7	CDE	22.51	bCDEF	16.30	CDEF	93.51	ABC	182.5	CDEF
SR93	5044	DEFGHI	195.0	F	25.69	ABCD	14.40	G	91.90	c	213.0	BCDE
$607 \times 94 \mathrm{HS} 21$	4921	DEFGHIJ	239.8	CD	20.43	DEFGH	16.80	BCD	93.62	ABC	158.3	DEF
SR94	4848	Defghis	245.0	BC	19.83	EFGH	17.00	BCD	94.00	ABC	171.5	CDEF
USH23	4793	DEFGHIJ	220.0	DE	21.56	CDEFG	15.58	EF	93.39	ABC	176.5	CDEF
607x94HS25	4627	EFGHI	226.9	CDE	20.22	DEFGH	15.94	CDEF	93.71	ABC	178.0	CDEF
ACH185	4591	EFGHIJ	225.5	CDE	20.31	DEFGH	16.06	CDEF	93.06	ABC	129.8	F
HS POLL	4549	FGHIJ	242.6	BC	18.79	EFGH	17.15	BC	93.12	ABC	178.0	CDEF
576xHS	4045	GHIJ	213.7	E	18.56	EFGH	15.24	FG	93.20	ABC	150.2	EF
SR80	3933	HIJ	232.9	CDE	16.88	FGHI	16.22	CDEF	94.00	ABC	132.5	F
SR87	3674	IJ	224.2	CDE	16.47	GHI	15.88	DEF	93.31	ABC	160.5	DEF
6869	3433	J	219.5	DE	15.64	HI	15.98	CDEF	92.12	BC	246.0	ABC
W357B	1570	K	111.2	G	13.70	I	9.78	H	87.03	D	303.1	A
Fodder (Mangle)	1507	K	106.5	G	13.90	I	9.72	H	85.50	D	231.5	BCD
CHARD(est)					4.54	J	13.80	1				

Overall, there was no apparent relationship between emergence and agronomic performance, although for commercial materials better emergers tended to yield higher. Rankings of emergence among accessions was similar to that observed in the 1997 field trail (for those accessions in common, e.g. US H23 < ACH 185 and B5931 < Novartis E17 < US H20).

A series of crosses were made by J.C. Theurer (retired) in 1993 as a test for combining ability. These materials were included to compare emergence of different hybrids (e.g. 657 xHS , $\mathrm{H} 23 \mathrm{xHS}, 607 \mathrm{xHS}, 576 \mathrm{xHS}$ and BMCxHS) created with the same pollinator (e.g. $\mathrm{HS}=92 \mathrm{HS} 25$) grown in the same environment. Significant differences between the hybrids for emergence was not evident, although significant differences for agronomic performance were observed.

FIELD EVALUATION OF EMERGENCE II: REPLICATED TESTS OF IDENTICAL VARIETIES GROWN IN DIFFERENT ENVIRONMENTS.

J. Mitchell McGrath, Cathy A. Derrico, Yi Yu and Richard A, Kitchen USDA-Agricultural Research Service, Cooperative with Department of Crop and Soil Sciences
The objective of this test was to examine field emergence among different seedlots of the same commercial variety. Three varieties were available in which seedlots had been obtained in the same year from more than one grower (via the West Coast Beet Seed, Co., Salem, OR). Additional seedlots from different years were available in some instances, as well. All seedlots were commercially prepared by the Michigan Sugar, Co. and Monitor Sugar, Co. seed plant, and their efforts in securing these seeds and their seed multiplication location are gratefully acknowledged. Field data was gathered for comparisons with germination data in liquid media (data not shown).

For emergence (Table 1) no significant statistical differences were evident between seedlots of the same variety grown in the same year, however variability between replications was high in all cases despite eight replications of the trial. Significant differences between varieties were evident.

Table 1: Mean emergence in Test 9813BB. The first two digits of the lot number indicate year of production. Different lot numbers within the same year were grown in different commercial production fields. One variety with an unknown year of production was used to balance the test. Test was planted in four two-row experimental unit of 100 seeds per row, with each row treated as an independent replicate.

Entry	Lot \#	May $\mathbf{8}$	May 13	May 18	May 26	Mean	Std Dev
E17	950533	41.9	57.6	55.0	48.4	50.7	8.7
E17	960003	45.9	61.4	57.0	51.9	54.0	9.5
E17	960001	44.1	56.8	53.5	49.3	50.9	8.4
E17	960013	38.1	52.0	50.9	47.9	47.2	7.7
E17	960017	31.3	48.6	47.0	45.4	43.1	10.0
E17	960015	31.8	45.6	45.3	41.5	41.0	9.3
E17	960019	28.4	45.8	45.6	42.3	40.5	9.2
E17	970095	37.5	51.5	50.3	47.9	46.8	7.2
ACH308	950312	41.3	50.6	46.9	44.4	45.8	6.6
ACH308	960009	29.8	49.5	48.0	45.5	43.2	10.4
ACH308	950772	33.0	45.0	44.5	42.1	41.2	10.0
E4	unknown	22.8	44.6	41.6	41.4	37.6	11.3
E4	93514	14.8	40.0	39.1	35.9	32.4	11.3
E4	931138	10.0	29.8	28.4	27.8	24.0	9.2
CV (\%)		22	14	13	14		
LSD (0.05)		7.2	6.9	6.7	6.5		

Agronomic performance (Table 2) did not appear to be correlated with emergence, although the best yields (RWSA) were seen with the best emergers. However, the relative emergence of the two remaining varieties was opposite in rank to their agronomic performance.

Table 2: Agronomic performance for Test 9813 BB arranged in order of decreasing RWSA.

Entry	Lot	RWSA		RWST		T/A		Suc \%		CJP \%		NH2	
E17	960001	7432	A	275.0	AB	27.14	A	18.82	A	94.32	A	148.5	A
E17	960017	7394	$A B$	282.2	A	26.16	AB	19.34	A	94.14	A	174.8	A
E17	950533	7311	$A B$	272.3	ABC	26.85	A	18.64	AB	94.32	A	154.5	A
E17	960019	7310	AB	277.4	AB	26.33	AB	19.10	A	93.98	A	174.0	A
E17	960015	6897	AB	272.0	ABC	25.31	$A B$	18.71	$A B$	94.08	A	152.0	A
E4	unknown	6880	$A B$	253.8	BC	27.11	A	17.87	AB	93.16	A	162.5	A
E17	970095	6851	$A B$	274.2	AB	24.94	AB	18.90	A	93.96	A	132.8	A
E4	93514	6812	AB	263.1	ABC	25.94	AB	18.26	$A B$	93.74	A	179.3	A
E4	931138	6669	$A B$	269.8	ABC	24.68	$A B$	18.45	$A B$	94.39	A	178.0	A
E17	960003	6629	$A B$	269.7	ABC	24.50	$A B$	18.43	$A B$	94.45	A	162.0	A
ACH308	960009	6075	ABC	265.3	ABC	22.90	ABC	18.44	$A B$	93.72	A	124.6	A
E17	960013	5873	ABC	260.8	ABC	22.43	ABC	17.97	$A B$	94.12	A	129.1	A
ACH308	950312	5799	BC	259.8	ABC	22.08	BC	18.00	$A B$	93.97	A	165.8	A
ACH308	950772	4895	C	248.1	C	19.46	C	17.14	B	94.21	A	120.3	A

EXPERIMENT 9814BB: AGRONOMIC EVALUATION OF SMOOTH ROOT RELEASES AND PROSPECTIVE RELEASES.

Joseph W. Saunders, J. Mitchell McGrath and Richard A. Kitchen USDA-Agricultural Research Service, Cooperative with Department of Crop and Soil Sciences

This experiment was designed to evaluate performance for the standard agronomic parameters as well as suture prominence score. Tested germplasm included three commercial hybrid varieties (ACH555, B5931, HME17), the 1998 East Lansing ARS smoothroot release SR95 (96HS20-7), two 1997 East Lansing ARS smoothroot releases (SR93 and SR94), two older East Lansing ARS smoothroot releases (SR87 and SR80) from 1992 and 1990 respectively, and four prospective East Lansing ARS smoothroot releases (96HS5, 96HS15, 96HS25, 97HS21-7). The four remaining entries were a smoothroot developmental population (WC970307, aka 96J09-2,), 97J27-00 (a three-way clone hybrid with two smoothroot parents), 96RM10-02 (a
smoothroot high sugar developmental line segregating for Rhizomania resistance), and 98J11011 ($\mathrm{an} \mathrm{F}_{2}$ population of a cross between SP550-01 and SR95. The three 1997-98 releases and the four prospective releases are derived from the East Lansing ARS breeding program of J.C. Theurer, now retired, that combined eastern US smoothroot sugarbeet germplasm with high sucrose percentage germplasm lacking tolerance to diseases in the Great Lakes production area. This was a six-replicate, four-row test with harvest of the middle two rows only.

The summary table for Experiment 9814 BB is ordered by Recoverable White Sugar per Acre (RWSA) performance. When sucrose percentages are examined, the three commercial hybrid checks form the leading cluster. The extremely smoothroot entries SR87 and SR93 group at the bottom for sucrose $\%$, consistent with past performances. In general, the historical pattern of inverse relationship between sucrose percentage and root smoothness is seen in this test, although 1998 release SR95 and prospective release 97HS21-7 have root smoothness nearly as great as released germplasms SR87 and SR93.
Table 1: Agronomic performance of lines in Test 9814BB.

Entry	RWSA		RWST		T/A		Suc \%		CJP \%		NH_{2}		Suture	
HME17	7426	A	272.3	AB	27.27	A	18.87	A	93.74	ABCD	160.2	CDEFG	2.50	A
97J27-00	6875	$A B$	238.0	D	28.02	A	17.13	CDE	92.34	D	256.4	A	1.92	BC
ACH555	6812	AB	275.9	A	24.61	$A B$	18.52	$A B$	95.30	A	174.5	BCDEFG	2.50	A
B5931	6576	ABC	260.2	BC	25.24	AB	17.89	BC	94.32	ABC	123.0	G	2.50	A
96RM10-02	6009	$B C D$	239.5	D	25.16	$A B$	17.10	CDE	92.68	CD	215.2	ABC	2.00	B
SR94	5981	BCD	241.2	D	24.68	$A B$	16.91	DE	93.61	BCD	175.7	BCDEFG	1.83	BCD
$\begin{aligned} & \text { 96HS20-7 } \\ & \text { (SR95) } \end{aligned}$	5653	BCDE	237.0	D	23.75	ABC	16.49	DE	93.99	ABC	198.8	ABCDE	1.54	DE
96HS25	5371	CDE	246.6	CD	21.15	BCD	17.12	CDE	93.99	ABC	151.6	DEFG	1.79	BCD
98J11-011	5158	DE	246.7	CD	20.92	BCD	17.20	CD	93.72	ABCD	231.0	AB	1.96	B
97HS21-7	5158	DE	237.1	D	21.79	BCD	16.50	DE	93.98	ABC	148.5	EFG	1.46	E
SR80	5038	DE	231.7	DE	21.70	BCD	16.22	EF	93.76	ABCD	154.0	CDEFG	1.58	DE
SR87	4815	DE	220.6	EF	21.95	BCD	15.55	FG	93.62	BCD	186.3	BCDEF	1.63	CDE
96 HS 5	4696	DE	257.0	C	18.30	D	17.38	CD	95.14	AB	133.2	FG	1.83	BCD
96HS15	4694	DE	239.8	D	19.58	CD	16.98	CDE	93.10	CD	214.0	ABCD	1.92	BC
96J09-2	4635	E	237.5	D	19.57	CD	16.83	DE	93.07	CD	210.2	ABCDE	2.33	A
SR93	4632	E	211.9	F	21.62	BCD	15.02	G	93.52	BCD	173.0	BCDEFG	1.54	DE

EXPERIMENT 9815BB: AGRONOMIC EVALUATION OF SMOOTH ROOT DEVELOPMENTAL POPULATIONS, PROSPECTIVE RHIZOCTONIA RESISTANCE RELEASES, AND HYBRIDS OF SP550.

Joseph W. Saunders, J. Mitchell McGrath and Richard A. Kitchen
USDA-Agricultural Research Service, Cooperative with
Department of Crop and Soil Sciences

The objective of this test was to evaluate advanced breeding lines for agronomic performance. Two commercial lines, three East Lansing germplasm releases, and 10 experimental lines were examined.

Description of entries:

ACH555
HMI E17
SR93
98J26-052
WC92408
97J51-00
98EL50
550 cmsX 98 EL 50
98J09-00
98J18-00
98J19-01
550 cmsX 98 J 19
98J27-00
98RR
550 cmsX 96 RR

American Crystal commercial cultivar
Novartis Seeds Hilleshog commercial cultivar
ARS-EL smoothroot release
Pprospective RZT-APH-CER resistance mm release
Theurer 1992 'Oregon Composite' germplasm mixer
F_{2} of high sugar SR clone and mm near-Type-O clone
EL50; mm APH-CER resistance, some RZT resistance
Hybrid of SP550cms X EL50
F_{2} of mm SR clone and mm RZT resistance population
F_{2} of MM SR clone and mm RZT resistance population
F_{2} of AA-1 and AA-2 SR clones from 95 H 07 population.
Hybrid of SP550cms X 98J19-01
Complex F_{2} of three-way hybrid with $50 \% 95 \mathrm{H} 07$
Newly released as EL51 RZT-CER resistant multi-mono Hybrid of SP550cms X EL51

RZT $=$ Rhizoctonia, CER $=$ Cercospora, APH $=$ Aphanomyces
The commercial cultivar checks HM E17 and ACH555 occupied the two top positions for $\mathrm{SUC} \%$, and HM E17 was significantly the highest recoverable white sugar per acre (RWSA, Table 1). Percent sucrose (SUC\%) was the focus of this test, and entries based on traditional East Lansing germplasm generally scored in the $15.5-16.3 \%$ SUC range. Entries with some background of high SUC\% (such as 97J51-00, WC92408 and 98J27-00) fell into the 16-17\% SUC range. Hybrids of 96RR and 98 J 19 with the higher SUC\% SP550cms had considerably higher SUC\% than the corresponding pollinator entries. The hybrid of 98EL50 with SP550cms had an equivalent SUC\% to the pollinator entry, but still in the range of the other two SP550 cms hybrids. SP550-0 is being considered as a source of adapted high SUC\% germplasm for improving sugar \% without sacrificing resistance to Aphanomyces or Cercospora.

Perhaps the most interesting result of the test was that the two highest tonnage entries (98J19-01 and 98J27-00) in the test had at least 50% of their germplasm from the SR source line 95 H 07 . Furthermore, the highest tonnage entry in test 9814 BB also had 50% of its germplasm from 95 H 07 . All three entries had one SR parent clone in common. Collaterally, all three entries were low in clear juice purity (CJP\%) and/or high in amino-N.

A similar but larger grouping of the 95 H 07 -derived entries is seen from the RWSA ordering in tests 9814 BB and 9815 BB . In that case, one ($97 \mathrm{~J} 27-00$) of the two top entries in test 9814 BB was a 95 H 07 derivative, and three of the top four entries in test 9815 BB were 95 H 07 derivatives, when counting 98 J 19 x 3 , which is $550-\mathrm{cms} \mathrm{X} 98 \mathrm{~J} 19-01$. Another way of viewing the grouping is knowing that there were only four 95 H 07 derivatives entered in the total of the two tests. 95 H 07 is a derivative of a cross of EL50 X SR selections from WC91034M.

Table 1: Agronomic performance of lines in Test 9815BB. Entry 97J03-00 failed to emerge.

Entry	RWSA		RWST		T/A		Suc \%		CJP \%		NH_{2}	
E17	7154	A	261.1	A	27.37	ABC	18.06	A	93.95	A	213.2	DEF
98J27-00	6247	B	223.9	CD	28.00	AB	16.21	CDEF	92.26	EFG	235.7	CDE
98J19x03	5991	BC	232.9	BC	25.74	ABCD	16.61	BC	92.84	BCDE	222.3	CDEF
98J19-01	5879	BCD	208.9	F	28.30	A	15.64	DEF	91.04	H	275.3	BC
SR93	5569	BCD	222.1	CDE	25.08	ABCDE	15.63	DEF	93.65	$A B$	215.7	CDEF
WC92408	5527	BCD	227.4	CD	24.24	BCDEF	16.11	CDEF	93.24	ABCD	174.8	EF
98J26-052	5507	BCD	210	EF	26.25	ABC	15.49	EF	91.64	GH	355.0	A
550 cmsx 96 RR	5505	$B C D$	232	C	23.65	CDEFG	16.41	CD	93.27	ABCD	186.8	EF
ACH555	5245	CDE	244.5	B	21.40	EFGHI	17.20	B	93.34	ABC	234.7	CDE
98EL50	4991	DEF	226.4	CD	22.03	DEFGH	16.26	CDE	92.61	CDEF	236.2	CDE
98J18-00	4945	DEFG	223.9	CD	22.10	DEFGH	16.17	CDEF	92.40	DEFG	170.8	F
97J51-00	4427	EFG	228.9	CD	19.37	HI	16.62	BC	92.07	EFG	264.8	BCD
98J09-00	4313	EFG	215.7	DEF	19.98	GHI	15.45	F	92.91	BCDE	207.0	DEF
98RR	4261	FG	204.3	F	20.89	FGHI	14.74	G	92.78	BCDE	171.7	F
550 cmsxEL 50	4022	G	223.3	CD	17.97	1	16.30	CDE	91.91	FG	305.7	$A B$
97J03-00	0	H	0	G	0.00	J	0.00	H	0.00	I	0.0	G

Joseph W. Saunders and Peter S. Hudy

Research in the last year has included evaluation of mycelial growth of Cercospora beticola (CER) and Pythium ultimum (PYT) on nitrogen variations of the standard MurashigeSkoog (MS) medium we use for culture of various sugarbeet tissues, much like the initial evaluations of mycelial growth of Rhizoctonia solani (RZT) and Aphanomyces cochlioides (APH) reported last year. Although for each pathogen a single isolate from sugarbeet was used, the use of four pathogens evaluated in similar manner has introduced the concept of comparative studies of pathogen-sugarbeet interactions that has prospects for greater understanding of pathogen action when incorporated into factorial experiments with combinations of genetic resistance to one or more pathogens. Issues such as effectiveness of host resistance against spores versus mycelium, and tissue specificity of resistance, may also be addressable in an in vitro culture system.

The best way to comprehend the current status of this research thrust is to summarize the findings for each of the four pathogens. RZT and PYT grew well (about $2 \mathrm{~cm} /$ day) from mycelial plugs on Murashige-Skoog agar medium with standard 60 mM nitrogen from nitrate and ammonium (all media contained 3\% sucrose as carbon and energy source). This rapid growth rate quickly covered the plate in two days or less. Mycelial growth of both RZT and PYT was similar with 60 mM nitrogen (N) from either nitrate or ammonium alone to that with the standard MS N mix, indicating ability of these two pathogens to grow well on minimal forms of nitrogen.

On the other hand, mycelium of Cercospora beticola (CER) grew more slowly (about a tenth as fast), and Aphanomyces cochlioides (APH) spread rapidly but sparsely on MS medium with standard N mix of nitrate and ammonium. Each of these growth habits (slow growth of CER, sparse growth of APH) may be suitable for use in culturing sugarbeet tissue in the same petri dish or flask as pathogen mycelium, especially if modifications of the medium can be worked out to further restrict mycelial growth.

Progress in that direction was achieved with APH. It was discovered that APH growth was negligible on standard MS medium without agar (ie, liquid on a shaker), and also when more refined kinds of agar were used instead of the usual Difci Bacto agar. This suggested that impurities in the Bacto agar were permitting the sparse growth to occur. Further experiments with various N and sulfur (S) sources have strongly suggested that APH isn't capable of chemically reducing the very basic nitrate and sulfate forms of N and S found in MS medium (and that sugarbeet tissues and RZT, PYT and CER can ably assimilate).

These latter experiments had two complications. First, it was difficult at first to assess the effectiveness of various N sources before it was realized that a reduced sulfur source such as thioglycolate or methionine was also required. Secondly, basal growth in some experiments could have depended on low quantities of reduced N or S brought in with the water agar (Bacto!) mycelial inoculum plug.

This apparent inability of APH to reduce nitrate and sulfate has several implications. First is that minimal growth of APH in cultures containing beet tissue should be possible by using a
purified form of agar for both the main medium and for the water agar used to prepare the mycelial inoculum plugs (cylinders cut from the agar). Second is that APH as a member of the soil microflora may have limited ability to grow saprophytically, contrary to what's understood for RZT and PYT, which probably use nitrate as the predominant N source during their saprophytic growth. Extending this, it may be valid to exclude effects of rotation on quality and quantity of organic matter as having a direct role in control of APH, and think more of effects of better weed control or rotation to reduce oospore and zoospore concentrations in the sugarbeet crop.

With CER, growth with nitrate or ammonium as sole N source was greater than growth on the standard MS mix. This seems a little unusual, but was very repeatable.

What did these pathogens do when inoculated on the other side of the Petri dish from sugarbeet callus, leaf disc or fibrous root masses growing on standard MS agar medium? RZT and PYT quickly overran the entire agar surface and the beet tissue; the beet tissue did not remain alive. APH mycelia grew sparsely toward the beet tissue, growing in density when contacting the proximal area of the tissue, then overrunning it slowly. Such a system might be useful if further modifications can be worked out, perhaps involving less sucrose in the medium.

The most interesting interaction seen in these preliminary experiments occurred with CER. When several inoculum plugs were placed on the far side of the plates from the single leaf discs, the CER mycelia slowly grew outward to a diameter of about one cm , then appeared to stop surface growth and grow sparsely beneath the surface of the agar. When it came within about a centimeter of the senescing leaf disc, the sparse mycelium appeared to hit the zone of biological exudates from the disc, and produced the conspicuous red color of the phytotoxin cercosporin (the plates had been growing in the lab light). My interpretation of this was that CER mycelia were unable to produce cercosporin initially from the inorganic nitrogen in the MS medium, but did produce cercosporin when nutrition from proteins exuded from the leaf discs were encountered. Differential response to different carbon/nitrogen environments could be another interpretation.

Another approach to co-culturing CER with sugarbeet leaf discs was taken by placing a single mycelial agar plug on top of the leaf disc (genotype REL-1), in the middle. Within a few days a necrotic 'hole' had been burned down through the disc, without spreading laterally. Next, the mycelium spread along the agar surface underneath the leaf disc, then spread over the disc after appearing from beneath the underside of the disc. This system may have prospects for comparing genotypes because the initial growth of CER is slow (it does not start out in contact with the medium), and the initial damage to the discs if limited and slow to develop, on the time scale of days.

Co-culture of pathogen and host plant tissue in vitro offers prospects for studying host defense gene expression, and opportunities for identification and cell selection of resistant genotypes, but pathogen growth characteristics on the medium used to culture the host tissue can determine the feasibility of such systems. From the research summarized above, APH and CER would appear to be the two pathogens with the most potential to be used in co-culture research. APH would appear amenable to somatic cell selection, especially with use of purified agar to restrict myceliar growth in the presence of sugarbeet tissue. Because APH is primarily a seedling
disease, the novel use of germinating somatic embryos as "seedlings" to identify somaclonal variants at the (small) whole plant level is anticipated.

RZT or PYT, on the other hand, would have to be used differently in a sugarbeet tissue culture context because of their rapid growth on standard MS agar medium. We have demonstrated toxicity of RZT culture medium filtrate (CF) to plated suspension cells of sugarbeet (clone REL-1). Recently we adapted a polyacrylamide gel electrophoresis (PAGE) system for protein separation and staining to visualize proteins in the RZT-CF liquid. As little as 30 microliters of CF from sixteen day cultures of RZT growing on sugarbeet cell walls produced up to a dozen protein bands, probably soluable hydrolytic enzymes (see accompanying figure).

PRESENTATIONS AT SCIENTIFIC MEETINGS

Abstract

"Differential growth of sugarbeet root pathogens Rhizoctonia solani and Aphanomyces cochlioides on nitrogen variations of Murashige-Skoog medium for development of co-culture systems" at the IX International Congress on Plant Tissue and Cell Culture in Jerusalem in June 1998. "Growth of sugarbeet pathogens Cercospora beticola and Pythium ultimum on variations of Murashige-Skoog medium for development of co-culture systems" at the annual meeting of the American Society of Agronomy in Baltimore in Oct 1998.

NOTICE OF RELEASE OF SR95 SMOOTH ROOT SUGARBEET GERMPLASM

Sugarbeet (Beta vulgaris L.) germplasm SR95 (Reg. No. GP- , PI 603947) was developed by the USDA-ARS and the Michigan Agricultural Experiment Station, in cooperation with the Beet Sugar Development Foundation, and released in December 1998. SR95 has excellent root smoothness, equivalent to SR87 (3) but with at least 5% higher sucrose concentration than SR87. SR95 has significantly smoother roots than SR94 (1) released earlier from related parentage. The smoothroot characteristic reduces soil quantities taken from the field on harvested beets, as well as subsequent soil disposal costs as industrial waste at the sugar factory (3). Smoothroot sugarbeets also are prospective components of redesigned sugarbeet harvesting and piling systems that reduce bruising and subsequent storage-pile sugar losses due to rot and respiration.

SR95 resulted from two successive open-pollination increases of half-sib seed produced on a single mother beet selected for extreme root smoothness from the population that later was released as SR94 (1). That single mother beet had been open-pollinated by seven other beets mass-selected for elite root smoothness and conical shape, each stemming from different complex but related parentages that as a group combined high sucrose concentration germplasms L19 (2), C40 and C51, curly-top-resistant L35cms (2) and L53 (2), and smoothroot germplasms SP85700-0 (3), SP85131-0 and SP8530-0 from the former USDA breeding program of G. Coe at Beltsville. L19 (PI 590690), C40, C51 and SP85700 (PI 590776) also comprise most of the parentage of SR94. C40 (8400040) and C51 (8400051) are high sucrose percentage lines kindly provided by Crystal-Maribo Seeds. L19, L35cms (PI 590840) and L53 (PI 590841) were developed for the intermountain region by the former USDA breeding program at Logan UT.

SR95 is diploid multigerm and segregates for red and green hypocotyl color. SR95 is relatively easy bolting, and male-fertile plants are largely self-sterile with a significant degree of pseudo-self-fertility under individual plant isolation. Male-sterility exceeds thirty percent, and is thought to be derived from L19. SR95 has been tested under the East Lansing seed number 96HS20-7 where it yielded sucrose concentrations 108, 106, 96, and 91 percent of that of SR87, SR93, SR94, and the mean respectively of that of three commercial cultivars ACH185 (American Crystal), B5931 (Betaseed) and HME17 (HilleshogNovartis) at Saginaw MI in 1997. In that same test, SR95, SR87, SR93, SR94 and the threesome of commercial cultivars had smoothroot scores $(0=$ no grooves, branch roots or fibrous roots on the beet; $4=$ deep grooves, at least one branch root and plentiful fibrous roots) of $1.75,1.63,1.63,2.21$ and 2.79 , respectively.

Cercospora leaf spot (Cercospora beticola Sacc.) disease index (average for three dates) for SR95 at the USDA-ARS evaluation at Ft. Collins CO in 1997 was 4.83 compared to $3.28,3.94$ and 6.50 for the resistant line EL50, SR94 and the susceptible check, respectively, on a scale of 0 to $7\left(\operatorname{LSD}_{0.05}=0.9\right)$. In the 1997 Betaseed root rot evaluation at Shakopee MN, which largely measures response to Aphanomyces cochlioides (Drechs.), SR95 had a moderately resistant stand rating (3.1 compared with 3.7, 4.5 and 5.7 for the resistant Michigan hybrid check, SR94 and the susceptible Canadian hybrid check, respectively, on a scale of 1 to $9 ; \operatorname{LSD}_{0.05}=1.17$).

SR95 provides an additional germplasm source for developing smoothroot breeding lines or cultivars. Seed will be maintained by USDA-ARS and is available for use by writing to Dr. J. Mitchell McGrath, USDA-ARS, Crop and Soil Science Department, Michigan State University, East Lansing, MI 48824-1325. Genetic material of this release has been deposited in the National Plant Germplasm System where it is available for research purposes, including development and commercialization of new cultivars.

J.W. Saunders*, J.M. McGrath, J.M. Halloin, and J.C. Theurer

References and Notes

1. Saunders J.W., J.M. McGrath, J.M. Halloin, and J.C. Theurer. 1999. Registration of SR94 sugarbeet germplasm with smooth root. Crop Sci. 39:297.
2. Theurer, J.C. 1978. Registration of eight germplasm lines of sugarbeet. Crop Sci. 18:1101.
3. Theurer, J.C. and R.C. Zielke. 1991. Field evaluation of SR87 smooth root sugarbeet hybrids. J. Sugar Beet Res. 28:105-113.

The technical assistance of Rick Kitchen and Peter Hudy is gratefully acknowledged.

NOTICE OF RELEASE OF EL51 SUGARBEET GERMPLASM WITH RESISTANCE TO RHIZOCTONIA CROWN AND ROOT ROT

Sugarbeet (Beta vulgaris L.) germplasm EL51 (Reg. No. GP-, PI 598074) was developed by the USDA-ARS and the Michigan Agricultural Experiment Station, in cooperation with the Beet Sugar Development Foundation, and released in January 1999. EL51 was released because it has extremely high resistance to crown and root-rotting strains (AG-2-2) of Rhizoctonia solani Kühn. EL51 was developed at the Sugarbeet and Bean Research Unit, East Lansing, Michigan by the sugarbeet breeding team of Drs. J.M. Halloin, J. C. Theurer (now retired), J.W. Saunders, and J. M. McGrath. EL51 also has moderate to good resistance to Cercospora leaf spot caused by Cercospora beticola Sacc. and to blackroot seedling disease and root rot caused by Aphanomyces cochlioides Drechs., and is an expected source for development of multigerm and monogerm parental lines for hybrid cultivars resistant to three of the most destructive sugarbeet diseases in the United States.

EL51 is predominantly multigerm with 11 percent monogerm plants. It is non-Type-O, self-sterile, and segregates for red and green hypocotyls. EL51 resulted from an initial hybridization of four plants of FC705/1, selected for resistance to Rhizoctonia crown and root rot at East Lansing in 1985, with a heterogeneous pollinator population of 87 plants. This group of males was composed of 15 mass selected plants from an increase of FC701/5 mass selected at East Lansing for resistance to Rhizoctonia crown and
root rot, and 72 plants from ten families ($81 \mathrm{~B} 19,82 \mathrm{~B} 18,83 \mathrm{~B} 8,84 \mathrm{~B} 5,84 \mathrm{~B} 6,84 \mathrm{~B} 7,84 \mathrm{~B} 8,84 \mathrm{~B} 9,84 \mathrm{~B} 10$, 84 B 11) of the traditional East Lansing germplasm pool, both multigerm and monogerm, some with Rhizoctonia resistance breeding history. These 72 plants had been mass selected for resistance to Rhizoctonia crown and root rot or to Cercospora leaf spot. Seven of the resulting F_{1} plants were chosen by mass selection for resistance to Rhizoctonia crown and root rot at East Lansing in 1987, and intercrossed to produce a population that was subjected to two consecutive cycles of recurrent selection for resistance to Rhizoctonia crown and root rot at East Lansing, with no less than twenty selected beets intercrossed in each generation. The resulting population was tested under the designation 96RR. EL51 resulted from the seed increase of 96RR for release purposes.

EL51 is highly resistant to Rhizoctonia crown and root rot, scoring a disease index (DI) significantly more resistant than resistant checks FC705/l and FC712 (1.70 compared with 2.40 and 2.23, respectively; DI of $0=$ no root rot, and $4=$ all plants dead; $\mathrm{LSD}_{0.05}=0.38$) in the 1997 USDA-ARS commercial cultivar evaluation at East Lansing. EL51 resistance to Cercospora leaf spot is moderately good, with EL51 receiving a 3.11 mean score compared with $2.83,2.89$, and 4.22 (DI of $0=$ no leaf spots and $7=$ all plants dead; $\operatorname{LSD}_{0.05}=0.84$) for the resistant check, EL50, and the susceptible check, respectively at the 1998 USDA-ARS evaluation at Ft. Collins. EL51 had a stand rating of 3.4 (moderately resistant) compared with 2.5 and 3.7 for SR87 and the resistant Michigan hybrid check in the 1997 Betaseed summer root rot (Aphanomyces) evaluation at Shakopee MN (DI of $0=$ full healthy stand, and 9 $=$ all plants dead; $\operatorname{LSD}_{0.05}=1.17$).

EL51 has been tested under the identification 96RR where it yielded sucrose concentrations 88 percent of the mean of that of two commercial cultivars ACH185 (American Crystal) and HME17 (Hilleshog-Novartis) in three tests at Saginaw MI in 1996 and 1997.

EL5l provides a germplasm source for the development of elite monogerm and multigerm parental lines and populations with resistances to crown and root rot and leafspot diseases. Breeder seed will be maintained by USDA-ARS and will be provided in quantities adequate for reproduction. Written requests should be addressed to Dr. J. Mitch McGrath, USDA-ARS, Sugarbeet and Bean Research Unit, Department of Crop and Soil Sciences, Michigan State University, East Lansing MI 48824. Genetic material of this release has been deposited in the National Plant Germplasm System where it will be available for research purposes, including development and commercialization of new cultivars. It is requested that appropriate recognition be made if this germplasm contributes to genetic research or to the development of a new breeding line or cultivar.
J.M. Halloin, J.W. Saunders*, J.C. Theurer, and J.M. McGrath

The technical assistance of Robert Sims and Rick Kitchen is gratefully acknowledged.

Use of Seed Mixtures of Rhizoctonia-Resistant and Susceptible Sugarbeet Varieties for Control of Crown and Root Rot.

BSDF Project 720

John M. Halloin and David J. Johnson, Agricultural Research Service, U. S. Department of Agriculture, Sugarbeet and Bean Research Unit, Department of Botany and Plant Pathology, Michigan State University, East Lansing, MI 48824-1312, and Steve Poindexter, Michigan State University, Agricultural Extension service, Saginaw, MI.

Background:

Recently, Rhizoctonia-resistant sugarbeet varieties with yields and sugar concentrations approaching, but not equaling those of other commercial varieties have become available to Michigan sugarbeet growers. These have been recommended for planting under conditions where severe crown and root rot problems are anticipated.

The pattern of disease development for crown and root rot typically observed is one in which several to many contiguous plants within a row, or within a few adjacent rows are diseased, with plants in other adjacent rows remaining non diseased. This pattern of disease development suggests that the fungus spreads through the soil, and is able to surmount the gap between plants within a row more easily than the larger gap between rows.

It was proposed that use of mixtures of seeds from both resistant and susceptible varieties would allow interdiction of this spread with resistant varieties, thereby limiting spread of the disease. Experiments were done in 1998 at two locations to determine the effect of such seed mixtures on the occurrence of crown and root rot, and on yield of sugarbeets.

Results:

The effect of planting seed mixtures on yields is summarized in the graph on the next page. The lines drawn between points representing 100 percent E17 and 100 percent RH3 represent the yields that would be anticipated from mixtures if use of mixtures had no effect on yields. All points representing yields attained with mixtures were above these theoretical lines, indicating that there were beneficial effects of planting mixtures. Actual counts of dead and diseased plants throughout the season (data not presented) showed small differences between treatments in numbers of dead plants, however, there were no statistically significant differences in numbers of contiguous plants killed or diseased at individual disease sites. Additionally, most plants succumbed to the disease simultaneously, indicating that plant-to-plant disease development is of little importance.

Discussion:

The effects of planting seed mixtures on yield showed statististically significant benefits of this practice. However, the observed pattern of disease development (simultaneous, rather than progressive, within rows) demonstrated that the benefits achieved were not the direct result of interdiction of disease spread. These results suggest that the observed pattern of disease occurrence likely is due to spread of fungus inoculum within rows or within a few adjacent rows during plowing and cultivation, rather than by growth of the pathogen through the soil. Yield increases that resulted from use of seed mixtures likely were due to survival of disease-resistant plants within diseased sites. Superior growth of these more isolated plants might account for the greater than expected yields achieved with variety mixtures.

Yield (tons/acre) RH-3 / E-17 mixture trial 1998

Studies on Aphanomyces cochlioides seedling disease of sugarbeets

BSDF Project 721

David J. Johnson, and John M. Halloin, Agricultural research Service, U. S. Department of Agriculture, Sugarbeet and Bean Research Unit, Department of Botany and Plant Pathology, Michigan State University, East Lansing, MI 48824-1312,

Yield losses from seedling disease caused by Aphanomyces cochlioides are largely avoided in Michigan through early planting into cool soils. Some A. cochlioides was isolated in 1998 from soil samples from fields with heavy stand losses. These fields, however, were planted later in the year than is optimal. The disease was not widespread in Michigan in 1998. Soil samples were taken from two heavily infested fields for later work on the population distribution of A. cochlioides in Michigan.

Studies on a sugarbeet seedling assay for resistance to A. cochlioides continued. The assay, unfortunately, gave poor discrimination between Edda, a "susceptible" variety and USH20, or ACH555, "resistant" varieties. In the assay, seedlings are infected with A. cochlioides zoospores, which are motile, actively sensing and swimming towards chemicals released by plant roots. With the anticipation of improving the assay, experiments were done on A. cochlioides zoospore production and behavior to improve reliability of the inoculum.

Zoospores were produced most abundantly in distilled water, as opposed to previously published zoospore induction media (Mitchell and Yang,) containing relatively high concentrations of various ions. Experiments were undertaken to study the effect of specific ions on zoospore production by A. cochlioides. Divalent cations such as $\mathrm{Ca}++, \mathrm{Mg}++$, had a deleterious effect on zoospore release. Monovalent cations such as $\mathrm{Na}+$ or $\mathrm{K}+$, had no or limited effects on zoospore production when compared to distilled water control.

Once zoospores are formed, it is necessary to dilute them to a predetermined concentration in order to inoculate sugarbeet seedlings and get consistent infection. Dilution with distilled water, however, caused zoospores to encyst (stop swimming). The reason for this effect is not known. Adding $\mathrm{Ca}++, \mathrm{Mg}++, \mathrm{Na}+$ or $\mathrm{K}+$ ions to the dilution media enhanced the percentage of motile zoospores in suspension, up to a point: at concentrations of $10-2$ to $10-3 \mathrm{M}$, ions also caused encystment. Ions at this concentration presumably were either a stimulus to germination (zoospores must encyst before they germinate and infect a host) or high concentrations of ions provided osmotic stress (cells in solutions of lower osmotic potential tend to leak their contents) to the zoospores.

Understanding of the genetic basis for the pathogenicity of A. cochlioides has been hampered by the inability to reliably germinate oospores, the sexual propagules of this pathogen. Work is in progress to improve production of oospores in culture and to achieve more synchronous germination of oospores.

The basis for resistance or susceptibility to A. cochlioides in sugarbeet seedlings is poorly understood. Saponins are compounds present in the epidermis of sugarbeet roots which cause excessive foaming problems during sugarbeet processing. These soap-like compounds may help defend sugarbeets against pathogen attack, by disrupting cell membranes of the pathogens. Saponins in other crops, such as oats, have been shown to play an important role in defense against a broad spectrum of pathogens. Such a role for saponins in sugarbeets has not been conclusively proven. Initial work to isolate saponins from sugarbeet tissues was successful. We
observed that saponins are present in epicotyl, hypocotyl, and root tissue of seedlings, as well as in mature sugarbeet roots. Further work to adapt a quantitative assay for saponins using HPLC, as well as a large-scale extraction of sugarbeet saponins to assay their toxicity to various pathogenic fungi will be initiated in 1999.

SUGAR BEET RESEARCH

1998 REPORT

Section F
Texas Agricultural Experiment Station
Bushland, Texas

Dr. C. M. Rush, Professor

Cooperation:
Holly Sugar Corporation - Sugar Land, Texas
Western Sugar Company - Denver, Colorado

This research was supported in part by funds provided through the Beet Sugar Development Foundation (Projects 503, 506 and 507)

CONTENTS

Abstracts of Papers F3
Determination of Optimum Irrigation Regime and Water Use Efficiency of Sugar Beet Grow in Pathogen Infested Soil
by G. Piccinni and C. M. Rush F7
Comparison of Serological Tests for the Detection of Two Soilborne Sugar Beet Viruses
by G. B. Heidel and C. M. Rush F12

FAHNERT, M.L., G. Piccinni, C.M. Rush and L.L. New. 1998. Effects of different irrigation regimes on sugar beet growth in a pathogen infested field. Phytopathology 88:S27

A study was conducted to evaluate the effect of frequency and amount of irrigation on disease development in sugar beets. The objective of the study was to determine the optimum irrigation regimes for highest yield and percent sucrose in a soilborne pathogen infested field. There were two main irrigation regimes: a Low Energy Precision Application (LEPA) system with 100%, 75% and 50% the full rate of the pivot system, and a LEPA system with on/off valves where plots were irrigated at different frequencies. Measurements taken during the season included top fresh weight, top dry weight, root fresh weight, and number of beets per meter. Soil moisture was determined by use of a neutron probe. At harvest, root yield, number of beets per meter, disease index, percent sucrose, and stand counts were determined. Highest disease index and lowest percent sucrose occurred in plots irrigated at the full rate. However, the treatments irrigated the least had a significantly higher percent sucrose than in full rate plots. These results indicate that disease losses can be reduced and yields increased with improved irrigation management.

PICCINNI, G. and C.M. Rush. 1998. Determination of optimum irrigation regime and water use efficiency of sugar beet. Plant Disease, Vol. 89: (submitted)

A field and greenhouse experiment were conducted to quantify the effects of different irrigation frequencies on sugar beet yield in pathogen-infested soils. In the field experiment, four irrigation regimes (every two, three, four and five weeks) and four inoculation treatments (beet necrotic yellow vein virus - BNYVV -, beet soilborne mosaic virus - BSBMV -, BNYVV+BSBMV, and non-inoculated control) were arranged in a split-plot design replicated four times. Crop growth, soil moisture, disease severity, yield and sucrose content were evaluated. Irrigation and inoculation treatments had significant effects on both disease severity and yield. Sugar beets irrigated every four weeks showed the lowest disease severity and a yield that was not significantly different from those irrigated every two weeks. Also, sucrose content was significantly higher for beets in the four-week irrigation treatment than those irrigated every two and three weeks. Beets inoculated with BNYVV had a significantly higher disease severity and lower root yield than those inoculated with BSBMV and BNYVV+BSBMV.

The greenhouse experiment as a compliment to the field study, was conducted to evaluate the effect of irrigation amounts on disease development and water use in sugar beet. Three pathogen treatments, BNYVV, BSBMV, BNYVV+BSBMV, a non-inoculated control and three irrigation amounts, pot capacity (PC), $75 \% \mathrm{PC}$ and $50 \% \mathrm{PC}$, were arranged in a split plot design and replicated five times. Pots of each treatment were weighed every other day to determine evapotranspiration. Evaporation was determined from unplanted pots, and plant transpiration was calculated by the difference. Beets irrigated at 75% pot capacity showed minimal disease incidence and a root weight comparable to the fully irrigated healthy control. Plants in the BNYVV treatment had a significantly higher disease severity than beets infected by BSBMV or BNYVV+BSBMV. Root weights and plant water use were significantly affected by inoculation treatments. Beets in the BNYVV+BSBMV treatment had a significantly higher root dry weight and water use than beets in the BNYVV treatment suggesting that BSBMV reduced the impact of disease caused by BNYVV.

MAHMOOD, T., and C. M Rush. 1998. Cross-protection between beet soil borne mosaic virus and beet necrotic yellow vein virus in sugar beet. Plant Disease, Vol. 89:(In Press)

ELISA, Western blotting, and reverse transcription-polymerase chain reaction (RT-PCR) were used to investigate the occurrence and degree of cross-protection produced in sugar beet in the greenhouse by protecting plants with beet soil borne mosaic virus (BSBMV) and challenging with beet necrotic yellow vein virus (BNYVV). Sugar beet seedlings were inoculated mechanically by vortexing in the absence of the fungus vector Polymyxa betae. A high degree of cross-protection occurred between BSBMV and BNYVV. The incidence of cross-protection dependents on the interval between inoculations with protecting and challenging virus; longer inoculation intervals enhanced the incidence of cross-protection. Cross-protection was most effective when inoculation interval was between 5 and 10 days, a period during which virus accumulated to a maximum level in plants singly infected with BSBMV or BNYVV. Results obtained by ELISA and Western blotting were consistent and indicated that cross-protection affected viral capsid protein. RNA of both protected and challenging viruses was detected in doubly infected plants by using RT-PCR indicating that RNA of the challenge virus was present in protected plants even though it was undetected by serological tests.

HEIDEL, G. B., and C.M. Rush. 1998. Comparison of serological tests for the detection of two soilborne sugar beet viruses. Phytopathology 88:S37

Beet necrotic yellow vein virus (BNYVV) and beet soilborne mosaic virus (BSBMV) are closely-related and often found to infest the same field. Cross reaction in serological tests used to identify the viruses is a concern when determining which virus is present. Sugar beets from seven fields in Texas and one field in Minnesota were tested for BNYVV and BSBMV by DAS ELISA, $\mathrm{F}\left(\mathrm{ab}^{\prime}\right)_{2}$ indirect ELISA, and a commercially-available BNYVV ELISA kit to determine consistency of results among tests. DAS and $F\left(a^{\prime}\right)_{2}$ ELISAs used antisera developed to purified virus (BNYVV-whl, BSBMV-whl) or denatured capsid (BNYVV-den, BSBMV-den). Results of Western blot assays were used as comparison standards for BNYVV and BSBMV assay results, respectively. Among BSBMV tests, results from DAS ELISAs more closely matched those of Western blots than those obtained from the $\mathrm{F}\left(\mathrm{ab}^{\prime}\right)_{2}$ test using BSBMV-den antiserum. Results from the BNYVV kit test matched those of Western blots more closely than those of the DAS ELISA using BNYVV-den IgG. BNYVV and BSBMV test results, including Western results, were ranked, respectively, according to the percentage of positive results for each test for all fields. No differences were indicated among BSBMV tests. The BNYVV kit test detected more positive samples than DAS or $\mathrm{F}\left(\mathrm{ab}^{\prime}\right)_{2}$ ELISAs using BNYVV-den antiserum.

Determination of Optimum Irrigation Regime and Water Use Efficiency of Sugar Beet

 Grown in Pathogen Infested SoilG. Piccinni and C. M. Rush.

Texas A\&M University, Texas Agricultural Experiment Station, P.O. Drawer 10, Bushland, Texas 79012.

INTRODUCTION

A field and greenhouse experiment was conducted at the Texas Agricultural Experiment Station in Bushland to quantify the effects of different irrigation regimes on sugar beet yield in pathogen-infested soils. The goal of this research was to identify the optimum irrigation regime that would minimize waste of precious irrigation water, reduce pumping expenses and at the same time maximize yield by reducing diseases.

MATERIALS AND METHODS

Field Study

Field studies were conducted at the Texas Agricultural Experiment Station in Bushland in 1996 and 1997 on ground not previously cropped to sugar beets. Sixteen twelve-row level basins were planted on May 5 and April 24 for the 1996 and 1997 crop year respectively with sugar beet variety TX18 at a seven seed per foot planting density. Four inoculation treatments BNYVV, BSBMV, BNYVV + BSBMV and a non-inoculated control were planted in two-row plots 15.24 m long. The four inoculation treatments occupied the center eight rows of each basin. At the end of each row and on each side of the level basins two filler rows were planted in order to minimize border effect. Seed were inoculated by coating them with ground root tissue containing viruliferous cystosori of P. Betae at the ratio of 1.5 g of inoculum; 10 g of seeds; 10 ml of methyl cellulose. Four furrow irrigation treatments, every two, three, four and five weeks were arranged in a split plot design replicated four times with irrigation treatment representing the main plot and inoculation treatment the subplot. At the end of the growing season beets from two rows in each replication, 1.5 m long, were gently pulled from the ground for disease evaluation. Beet roots were evaluated for the presence of rhizomania and or root rot like symptoms and rated on a scale form 0 to 4 , where 0 represented a healthy beet and 4 a small, hairy and stunted or rotted beet. After assigning a disease rating, roots were bagged and sent to Holly Sugar, Hereford, TX for determination of weight and sugar content. After hand sampling was completed, the entire plot was mechanically topped and dug, and plot weight was determined.

RESULTS

Irrigation and inoculation treatments had significant effects on both disease severity and yield. Sugar beets irrigated every four weeks showed the lowest disease severity and a yield that was not significantly different from those irrigated every two weeks. Also, sucrose content was
significantly higher for beets in the four-week irrigation treatment than those irrigated every two and three weeks (Tables 1, 2, 3 and 4).

Table 1 Effect of irrigation treatment on number of beets per meter, yield and \% sugar for the two-year field study. Values represent the mean of all inoculation treatment combined.

Irrigation $^{\text {a }}$	Number of beets \mathbf{m}^{-1}	Yield $\mathbf{M g ~ h a}$	
$\mathbf{2}$ weeks	$11.04 \mathrm{~A}^{\mathrm{b}}$	54.35 B	\% Sugar
3 weeks	9.91 A	52.98 B	13.04 B
4 weeks	11.10 A	65.47 A	13.61 A
5 weeks	10.43 A	42.75 C	13.89 A

a: Basins furrow irrigated every two, three, four and five weeks.
b. Means followed by the same upper case letter within a column are not significantly different by Duncan's multiple range test ($\mathrm{P}=0.05$).

Table 2 Effect of inoculation treatment on number of beets per meter, yield and \% sugar for the two-year field study. Values represent the mean of all irrigation treatment combined.

Inoculation	Number of beets \mathbf{m}^{-1}	Yield $\mathbf{M g ~ h a}$	
Control	$11.16 \mathrm{~A}^{\mathbf{- 1}}$	54.05 A	13.71 A
BNYVV + BSBMV	10.45 A	50.91 B	13.33 B
BSBMV	10.56 A	53.86 A	13.36 B
BNYVV	10.31 A	43.32 C	13.01 C

${ }^{\text {a }}$. Means followed by the same upper case letter within a column are not significantly different by Duncan's multiple range test ($\mathrm{P}=0.05$).

Table 3. Effect of inoculation treatment on disease ratings of sugar beets for the two-year field study. Values represent the mean of all irrigation treatment combined.

Inoculation	1996 Disease rating ${ }^{\text {b }}$	1997 Disease rating
Control	$0.34 \mathrm{C}^{\mathrm{a}}$	0.47 C
BNYVV + BSBMV	0.62 B	1.47 B
BSBMV	0.61 B	0.63 C
BNYVV	1.10 A	2.11 A

${ }^{\text {a }}$: Means followed by the same upper case letter within a column are not significantly different by Duncan's multiple range test ($\mathrm{P}=0.05$).
b. Disease rating is on a scale $0-4$, where 0 represented a healthy beet and 4 a small, hairy and stunted or rotted beet.

Table 4. Effect of irrigation treatment on disease ratings of sugar beets for the two-year field study. Values represent the mean of all inoculation treatment combined.

Irrigation	1996 Disease rating ${ }^{\text {c }}$	1997 Disease rating
2 weeks $^{\text {a }}$	$0.83 \mathrm{~A}^{\mathrm{b}}$	1.16 A
3 weeks	1.00 A	1.26 A
4 weeks	0.43 B	0.70 B
5 weeks	0.54 B	0.73 B

${ }^{2}$: Basins furrow irrigated every two, three, four and five weeks.
b. Means followed by the same upper case letter within a column are not significantly different by Duncan's multiple range test ($\mathrm{P}=0.05$).
c. Disease rating is on a scale $0-4$, where 0 represented a healthy beet and 4 a small, hairy and stunted or rotted beet.

GREENHOUSE STUDY

The greenhouse experiment as a compliment to the field study, was conducted to evaluate the effect of irrigation amounts on disease development and water use in sugar beet. Three pathogen treatments, BNYVV, BSBMV, BNYVV+BSBMV, a non-inoculated control and three irrigation amounts, pot capacity (PC), 75% PC and 50% PC, were arranged in a split plot design and replicated five times. Pots of each treatment were weighed every other day to determine evapotranspiration. Evaporation was determined from unplanted pots, and plant transpiration was calculated by the difference. Beets irrigated at 75% pot capacity showed minimal disease incidence and a root weight comparable to the fully irrigated healthy control. Plants in the BNYVV treatment had a significantly higher disease severity than beets infected by BSBMV or BNYVV+BSBMV. Root weights and plant water use were significantly affected by inoculation
treatments. Beets in the BNYVV+BSBMV treatment had a significantly higher root weight and water use than beets in the BNYVV treatment suggesting that BSBMV reduced the impact of disease caused by BNYVV.

Table 5. Effect of irrigation and inoculation treatments on root weight and disease rating at final harvest for the greenhouse experiment.

Root weight (g) Disease Index

	PC ${ }^{\text {abc }}$	75\%	50\%	PC	75\%	50\%
Control	321.06 A a	199.82 A b	139.09 A c	0.20 B a	0.70 A a	0.50 A a
BSBMV	280.58 A a	201.34 A ab	119.96 A b	1.40 A a	0.60 A a	0.90 A a
BSBMV + BNYVV	211.22 B a	200.28 A ab	118.21 Ab	1.70 A a	0.90 Ab	1.00 Ab
BNYVV	213.60 B a	175.68 A a	98.46 A b	2.35 A a	0.50 Ab	1.00 Ab

${ }^{\text {a }}$: PC, 75%, and 50% represent pots irrigated at pot capacity, 75% pot capacity and 50% pot capacity respectively.
${ }^{\text {b }}$. Means followed by the same upper case letter within a column are not significantly different by Duncan's multiple range test ($\mathrm{P}=0.05$).
c. Means followed by the same lower case letter within a row are not significantly different by Duncan's multiple range test $(\mathrm{P}=0.05)$.
d: Disease rating is on a scale $0-4$, where 0 represented a healthy beet and 4 a small, hairy and stunted or rotted beet.

Table 6. Effect of irrigation and inoculation treatments on total plant evapotranspiration for the greenhouse experiment.

Total seasonal plant evapotranspiration (g of water)

Inoculation	PC $^{\mathbf{a}}$	$\mathbf{7 5 \%}$	50%
Control	$28479 \mathrm{~A}^{\mathrm{b}}$	20017 A	11722 A
BNYVV +	26206 B	21395 A	9790 A
BSBMV			
BSBMV	26920 B	20544 A	9249 A
BNYVV	24532 C	20440 A	11132 A

${ }^{\text {a }}$: PC, 75%, and 50% represent pots irrigated at pot capacity, 75% pot capacity and 50% pot capacity respectively.
${ }^{\text {b }}$. Means followed by the same upper case letter within a column are not significantly different by Duncan's multiple range test $(\mathrm{P}=0.05)$.

Irrigation management is a key to obtaining profitable sugar beet yields in the presence of certain "moisture loving" soil borne pathogens. Growers should pay close attention to irrigation scheduling and apply the amount of water necessary to produce good quality sugar beets without loosing yield to pathogens. Furthermore, in areas where ground water is the only available water resource, net return should be calculated considering the short term return from saving energy necessary to pump water from wells, and the long term return of preserving the aquifer.

Comparison of Serological Tests for the Detection of Two Soilborne Sugar Beet Viruses

G. B. Heidel and C. M. Rush
Texas Agricultural Experiment Station, P. O. Drawer 10, Bushland, Texas 79012

Introduction

Rhizomania was first reported in the United States in 1984 in California (1). It has since been identified in other sugar beet-producing states including Texas, Colorado, Wyoming, Nebraska, Idaho, and Minnesota $(7,11)$. The disease is caused by beet necrotic yellow vein virus (BNYVV) and is characterized by heavy lateral root proliferation, overall stunting, and constriction of the tap root (8). The soilborne virus is transmitted by Polymyxa betae Keskin (2), and infection by BNYVV reduces yield both in percent extractable sugar and tonnage.

Beet soilborne mosaic virus (BSBMV) was first reported in Texas in 1988 (6). BSBMV and BNYVV are closely related. BSBMV, like BNYVV, is a multiparticulate virus composed of rigid, rod-shaped particles and is transmitted by P. betae $(4,10)$. The RNA species and coat protein sizes of both viruses are similar. Roots of sugar beets infected with BSBMV often appear healthy, though beets have been collected that exhibit typical symptoms of rhizomania but test positive only for BSBMV. BSBMV is found to systemically infect beets in the field more frequently than BNYVV, and foliar symptoms include broad yellow vein banding and mottling. To date, studies indicate that BSBMV causes some loss of yield, but not to the extent that BNYVV does. BSBMV has been identified in the same growing areas as BNYVV $(7,11)$.

Since these viruses are similar and are found in the same growing areas, it is important to be able to differentiate them by serological testing. BSBMV and BNYVV are serologically distinct. However, depending on test conditions and the antiserum used, cross reaction may occur $(4,10)$. There have been conflicting results from different labs that conduct BNYVV testing on field samples. This study was conducted to compare variation in results among different serological assays used to test field beet samples. A second part of the objective was to compare variation in test results when using antiserum developed to whole virus particles or denatured capsid of BNYVV and BSBMV.

Materials and Methods

In 1997, approximately 325 beets were collected from fields in Texas and Minnesota. In 1998, 235 beets were collected from fields in Minnesota, Colorado, Nebraska, and Texas. Results presented here are for beets collected in 1997. Beets that exhibited root or foliar symptoms indicating possible infection by BSBMV or BNYVV were selected for the study. Twelve replications, 20-30 beets each, were tested.

Antisera were developed in rabbits to BNYVV and BSBMV whole virus particles or denatured capsid. IgG was fractionated from the four antisera (BNYVV-whl, BNYVV-den, BSBMV-whl, and BSBMV-den; -whl indicates antiserum developed to whole virus particles, and -den indicates antiserum developed to denatured capsid).

Two ELISAs using these antisera were evaluated. In the first type of ELISA, an indirect DAS ELISA (which will be referred to as DAS ELISA in the remainder of this paper), plates were coated with IgG , samples were probed with a secondary biotin-labeled IgG , and the secondary antibody was detected with avidin-conjugated alkaline phosphatase (4). In the second type of ELISA, $\mathrm{F}\left(\mathrm{ab}^{\prime}\right)_{2}$ indirect ELISA, plates were coated with $\mathrm{F}\left(\mathrm{ab}^{\prime}\right)_{2}$ fragments generated
from the four antisera, and samples were probed with the respective unfractionated antiserum. Protein-A conjugated alkaline phosphatase was used to detect the antiserum probe (3).

Samples were also tested by BNYVV ELISA reagents obtained from a commercial source (Bioreba Ag) and by Western blot analyses. Reagents obtained from Bioreba Ag were for a simple direct DAS ELISA. For Western blots, samples were extracted, denatured, and stored frozen until they were tested. Antiserum developed to denatured capsid of BNYVV or BSBMV were used to probe samples tested by Western blot $(5,9)$.

Buffers used in all ELISAs were the same, and plates were incubated under the same conditions. Samples for ELISA were ground in extraction buffer at a ratio of 1:10 (w/v), and root samples prepared for Western analyses were extracted at a ratio of 1:3 (w/v).

To compare tests, Western analyses for BNYVV and BSBMV were chosen as standard tests. BNYVV and BSBMV ELISA results were compared to respective Western results on a beet-by-beet basis. If an ELISA result matched that of the same beet tested by Western blot, that was considered to be a match. The number of matches for beets tested by one ELISA from a replication were counted and converted to a percentage (number of matches divided by the number of beets tested). Data were analyzed to determine if results of any test matched those of Western blot analyses more closely than other test results.

To determine if any test (including Western blot) was consistently detecting the highest number of positive samples, tests were ranked by replication in terms of which test detected the highest percentage of positive samples. A ranking of 1 was assigned to the test or tests that detected the highest percentage of positive samples, and rankings of 2,3 , etc., were assigned to tests that detected lower percentages of positive samples, respectively, within a replication. Tests detecting the same percentage of positive samples within a replication were assigned equal rankings.

Results and Discussion

The percentage of positive samples, by test and replication, are indicated in Table 1. Most replications included beets positive for BNYVV and/or BSBMV.

Percentage of matching results for BSBMV tests and the range of percent matches for each test are in Table 2. Results of beets tested by DAS ELISA using BSBMV-whl and BSBMV-den antisera matched those of Western blot analyses more closely than results from $\mathrm{F}\left(\mathrm{ab}^{\prime}\right)_{2}$ ELISA using BSBMV-den antiserum. The range of percent matches was from 15-100 for all tests. In three $\mathrm{F}\left(\mathrm{ab}^{\prime}\right)_{2}$ BSBMV-den ELISA replications, fewer than 25% of the results matched those of beets tested by Western blot. In these replications, Western blot analyses and the other ELISAs usually indicated that most of the beets were negative for BSBMV; this test indicated that most of the beets were positive for BSBMV.

Among BNYVV tests (Table 3), results of DAS ELISA using antiserum developed to BNYVV denatured capsid matched those of Western blot analyses significantly less frequently than results of all other ELISAs. No differences in percentage of matching results were indicated among the other four tests.

Future analyses of the data will take into consideration how results of ELISA tests varied from those of Western blot analyses. In other words, ELISA results not matching Western results will be scored in terms of whether the ELISA result was positive and the Western result was negative, or vice versa.

Rankings of test results for BSBMV and BNYVV are in Tables 4 and 5. Among BSBMV tests, DAS ELISA using antiserum developed to whole virus particles detected the

Table 1. Percentage of beet root samples positive for BNYVV or BSBMV. Approximately 20 30 beets per replication were tested.

Test	DAS		Comm. ${ }^{2}$ BNYVV	Western		DAS		$\mathrm{F}\left(\mathrm{ab}^{\prime}\right)_{2}$			
	T-den ${ }^{1}$	B-den		T-den	B-den	B-whl	T-whl	B-whl	B-den	T-whl	T-den
Replication											
EBS	11	64	86	7	86	79	0	79	71	39	93
WBS	14	34	97^{3}	24	83	100	14	93^{3}	86	21	69
TEA	33	57	73	57	80	70	30	63^{3}	60	33	40
F 9-26	95	81	71	95	48	86	90	86^{3}	62	95	100
BMN	17	97	100^{4}	33	83	90	27	97^{4}	100	27	7
F10-10	81	95	95	76	86	95	81	33^{3}	67^{3}	52	67
FHP	10	63	100	20	100	97	10	100^{4}	73	50	33
N 9-26	55	75	90	30	45	90	45	80^{4}	75	55	50
EBS 3	7	83	79	3	53	90	20	83	62	59	79
DFR	57	93	$100^{3,4}$	17	83	100	27	$87^{3,4}$	100	70	100
EAC	37	20	$43^{3,4}$	10	0	30	7	$0^{3,4}$	0	0	0
SBS	58	25	100^{4}	24	90	100	23	$89^{3,4}$	46	32	71

${ }^{T}$ T indicates BSBMV (TX7); B indicates BNYVV; -den indicates antiserum developed to denatured capsid; -whl indicates antiserum developed to whole virus particles.
${ }^{2}$ ELISA reagents obtained from a commercial source.
${ }^{3}$ BSBMV control tested positive.
${ }^{4}$ BSBMV-like isolate (RC) tested positive.

Table 2. Percentage of BSBMV ELISA results matching those of Western blot analyses.

ELISA	Antiserum	\% Match	Range 2
DAS	- whl 1	83.8 a	$67-95$
DAS	-den	75.4 ab	$47-97$
$\mathrm{~F}\left(\mathrm{ab}^{\prime}\right)_{2}$	- whl	70.1 b	$41-100$
$\mathrm{~F}\left(\mathrm{ab}^{\prime}\right)_{2}$	-den	56.0 c	$15-95$

${ }^{1}$-whl indicates antiserum developed to whole virus particles; -den indicates antiserum developed to denatured capsid.
${ }^{2}$ Range indicates the highest and lowest percent match values.

Table 3. Percentage of BNYVV ELISA results matching those of Western blot analyses.

ELISA	Antiserum	\% Match	Range 3
Comm. ${ }^{1}$	-	79.0 a	$55-100$
DAS	- whl 2	76.3 a	$52-97$
F(ab' $)_{2}$	- whl 2	74.3 a	$35-100$
F(ab' $)_{2}$	- den	73.3 a	$50-100$
DAS	- den	58.1 b	$21-81$

${ }^{1}$ Commercially available BNYVV ELISA reagents.
${ }^{2}$-whl indicates antiserum developed to whole virus particles; -den indicates antiserum developed to denatured capsid.
${ }^{3}$ Range indicates the highest and lowest percent match values.

Table 4. Rankings of test results based on percentage of beets testing positive for BSBMV within a field ${ }^{\text { }}$.

Assay	Antiserum	Rank
$\mathrm{F}\left(\mathrm{ab}^{\prime}\right)_{2}$	-den 2	1.9 a
$\mathrm{F}\left(\mathrm{ab}^{\prime}\right)_{2}$	- whl	2.4 b
DAS	-den	2.6 b
Western	-den	2.9 c
DAS	-whl	3.4 d

${ }^{1}$ A ranking of 1 was assigned to the test within a replication that detected the highest percentage of positive samples. Rankings increased numerically as the percentage of positive samples indicated by a test decreased.
${ }^{2}$-den indicates antiserum developed to denatured capsid; -whl indicates antiserum developed to whole virus particles.

Table 5. Rankings of test results based on percentage of beets testing positive for BNYVV within a field ${ }^{\text { }}$.

Assay	Antiserum	Rank
Comm. 2	-	1.5 a
DAS	- whl 3	1.6 a
F(ab' $)_{2}$	- whl	2.6 b
Western	-den	3.2 c
F(ab' $)_{2}$	-den	3.3 c
DAS	-den	3.3 c

[^10]highest percentage of positive samples least often, and $\mathrm{F}\left(\mathrm{ab}^{\prime}\right)_{2}$ ELISA using antiserum developed to denatured capsid detected the highest percentage of positive samples most frequently. Among BNYVV tests, ELISA using commercial reagents and DAS ELISA using antiserum developed to whole virus particles detected the highest number of positive samples more frequently than other tests. No differences were indicated in rankings among Western analyses and $F\left(a b^{\prime}\right)_{2}$ and DAS ELISAs using antiserum developed to denatured capsid.

The weakness in ranking data in this way is that information on how much the values of percentage of positive samples detected varied among tests within a replication was not indicated. Rankings of 1 and 2 might mean that one test detected 90% positive samples and another test detected 60% positive samples. Or rankings of 1 and 2 might mean that one test detected 35% positive samples and another test detected 34% positive samples. A way to avoid this would be to group percent positive values into class rankings and assign numerical rankings to different classes instead of to individual scores.

Cross-reaction has been reported previously between BNYVV and BSBMV, depending on the test, test conditions, and antiserum used $(4,10)$. BNYVV and BSBMV controls were included in all tests used in this study, and, for most tests, controls reacted as expected. However, in seven $F\left(a^{\prime}\right)_{2}$ ELISAs using BNYVV-whl antiserum, one $F\left(a b^{\prime}\right)_{2}$ ELISA using BNYVV-den antiserum, and three commercial BNYVV tests, the BSBMV control tested positive. In six $\mathrm{F}\left(\mathrm{ab}^{\prime}\right)_{2}$ ELISAs using BNYVV-whl antiserum and four commercial BNYVV tests, an isolate referred to as RC reacted positively. RC typically reacts positively for BSBMV, but with a much weaker reaction than a standard BSBMV positive control. Tests which
indicated cross reactions mentioned above are noted in Table 1. For the most part, cross reaction was not observed in control samples.

Given the potential for cross reaction between BNYVV and BSBMV, it is important to include a BSBMV positive control in BNYVV tests and vice versa, particularly when evaluating new assays. When testing samples collected in 1998, reagents for BNYVV ELISA were obtained from a commercial supplier different from the one used in 1997 tests. At the manufacturer's recommended $1: 100$ dilution of BNYVV IgG and alkaline phosphataseconjugated IgG, there was a strong positive reaction by the BSBMV control. When reagents were diluted to $1: 750$, results were similar to those obtained using Bioreba Ag reagents.

A possible reason for variation in test results observed could be differences that can occur among ELISAs in terms of sensitivity and specificity. It has been reported that indirect ELISAs, such as $F\left(a b^{\prime}\right)_{2}$ tests, can be more sensitive and less specific than direct DAS ELISAs. $F\left(a b^{\prime}\right)_{2}$ tests can detect a broader range of serologically related viruses (3).

Even though variation in results occurred, most ELISA results were within 70-80\% agreement of Western results. For speed and ease of handling large numbers of samples, ELISA is a suitable test. However, samples should be tested in more than one way if results are in question.

Use of assays which incorporate molecular probes specific for BNYVV and BSBMV would provide further verification of serological results. Northern hybridization and RT-PCR would be appropriate tests. However, RT-PCR would be more sensitive and better suited to detect BNYVV or BSBMV in field beet samples in which the titer might be low and difficult to detect by Northern hybridization.

Literature Cited

1. Duffus, J. E., Whitney, E. D., Larsen, R. C., Liu, H. Y., and Lewellen, R. T. 1984. First report in Western hemisphere of rhizomania of sugar beet caused by beet necrotic yellow vein virus. Plant Dis. 68:251.
2. Fujisawa, I., and Sugimoto, T. 1976. Transmission of beet necrotic yellow vein virus by Polymyxa betae. Ann. Phytopathol. Soc. Jpn. 43:583-586.
3. Hampton, R., Ball, E., De Boer, S., eds. 1990. Serological Methods for Detection and Identification of Viral and Bacterial Plant Pathogens: A Laboratory Manual. APS Press, St. Paul, Minnesota.
4. Heidel, G. B., Rush, C. M., Kendall, T. L., Lommel, S. A., and French, R. C. 1997. Characteristics of beet soilborne mosaic virus, a furo-like virus infecting sugar beet. Plant Dis. 81:1070-1076.
5. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685.
6. Liu, H. -Y., and Duffus, J. E. 1988. The occurrence of a complex of viruses associated with rhizomania of sugarbeet. Phytopathology 78:1583.
7. Rush, C. M., and Heidel, G. B. 1995. Furovirus diseases of sugar beets in the United States. Plant Dis. 79:868-875.
8. Tamada, T., and Baba, T. 1973. Beet necrotic yellow vein virus from rhizomania-affected sugar beet in Japan. Ann. Phytopathol. Soc. Jpn. 39:325-332.
9. Towbin, H., Staehelin, T., and Gordon, J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Nat. Acad. Sci. U.S.A. 76:4350-4354.
10. Wisler, G. C., Liu, H. -Y., and Duffus, J. E. 1994. Beet necrotic yellow vein virus and its relationship to eight sugar beet furo-like viruses from the United States. Plant Dis. 78:995-1001.
11. Wisler, G. C., Widner, J. N., Duffus, J. E., Liu, H. -Y., and Sears, J. L. 1997. A new report of rhizomania and other furoviruses infecting sugar beet in Minnesota. Plant Dis. 81:229.

SUGARBEET RESEARCH

1998 Report

Section G

Molecular Plant Pathology Laboratory Agricultural Research Service United States Department of Agriculture

 Beltsville, MarylandDr. Ann C. Smigocki, Research Geneticist
Dr. L. David Kuykendall, Research Plant Pathologists

This research was supported in part by funds provided through the Beet Sugar Development

CONTENTS

PUBLICATIONS PAGE
List of 1998 publications G3
Selected Abstracts of Papers Published or Approved for Publication. G4
GENE TRANSFER TO OPTIMIZE THE SUCROSE STORAGE CAPACITY OF THE SUGARBEET TAPROOT (810)
Cytokinin [ipt]-transgenic sugarbeet. G8
ENGINEERING SUGARBEETS WITH MULTIPLE PROTEINASE INHIBITOR GENES FOR ENHANCED TOLERANCE TO THE SUGARBEET ROOT MAGGOT (811)
Digestive proteinases from the sugarbeet root maggot midgutsG10
SUGAR BEET BIOENGINEERING FOR CERCOSPORA BETICOLA RESISTANCE
AND DECREASED SUSCEPTIBILITY TO OTHER MICROBIAL PATHOGENS
L. David Kuykendall G12

PUBLICATIONS

Smigocki, A.C., S. Heu, I. McCanna, C. Wozniak and G. Buta. Insect resistance induced by overproduction of the plant growth regulator cytokinin in ipt transgenic plants. Plant Molecular Biology, (submitted)

Mujer, C.V. and A.C. Smigocki. Cloning and expression of a wound-inducible cytochrome P-450 from transgenic Nicotiana plumbaginifolia containing the bacterial isopentenyl transferase gene. Plant Molecular Biology, (revision submitted)

Smigocki, A.C. and J. Neal. Enhanced Insect Resistance in Plants Genetically Engineered with a Plant Hormone Gene Involved in Cytokinin Biosynthesis, U.S. Patent No. 5,792,934, 1998.

Hammerschlag, F.A. and A.C. Smigocki. Cytokinin-induced changes in growth habit of transgenic peach plants. HortScience, 33(5): 897-899, 1998.

Bartoszewski, G., Malepszy, S., Smigocki, A. and K. Niemirowicz. Preliminary analysis of transgenic tomato (Lycopersicon esculentum Mill.) plants with the isopentenyl transferase gene. Proc. 1998 IAPTC Conf., pp. 501-504, 1998.

Ivic, S., McCanna I., Sicher, R. and A. Smigocki. Transgenic sugarbeet (Beta vulgaris) engineered for production of high cytokinin levels involved in defense responses and carbon partitioning. Plant Physiol. Suppl., \#319, p. 82, 1998.

Whilhite, S., Elden, T. and A. Smigocki. Analysis of digestive proteinases from midguts of the alfalfa weevil Hypera postica (Coleoptera: curculionidae) and cloning of cysteine proteinase genes. Plant Physiol. Suppl., \#709, p. 147, 1998.

Mujer, C.V. and A. Smigocki. Cloning and expression of a wound-inducible cytochrome P450 from hornworm-infested and mechanically wounded leaves of ipt-transformed Nicotiana plumbaginifolia. Plant Physiol. Suppl., \#770, p. 157-158, 1998.

Wilhite, S., A. Smigocki and T. Elden. Isolation of a cysteine proteinase cDNA from the alfalfa weevil and analysis of its midgut proteinases. Proc. Mid-Atlantic Plant Molecular Biology Society, p. 34, 1998.

Mujer, C. and A. Smigocki. Molecular cloning and characterization of a cytochrome P450 from Nicotiana plumbaginifolia transformed with the bacterial isopentenyl transferase gene. Proc. MidAtlantic Plant Molecular Biology Society, p. 33, 1998.

Wilhite, S., A. Smigocki and T. Elden. Cloning of cysteine proteinase genes from alfalfa weevil Hypera postica (Coleopteran: curculionidae). Proceedings of BARC Poster Day, \#39, 1998.

Mujer, C. and A. Smigocki. Systemic induction of a cytochrome P450 gene by feeding insects (Manduca sexta) and mechanical wounding in ipt-transformed Nicotiana plumbaginifolia leaves. Proceedings of BARC Poster Day, \#33, 1998.

Selected abstracts of papers published or approved for publication:

TRANSGENIC SUGARBEET (BETA VULGARIS) ENGINEERED FOR PRODUCTION OF HIGH CYTOKININ LEVELS INVOLVED IN DEFENSE RESPONSES AND CARBON PARTITIONING Snezana D. Ivic Molecular Plant Pathology Laboratory, USDA-ARS, BARC-West, Beltsville, MD 20705 Iris J. McCanna Molecular Plant Pathology Laboratory, Richard C. Sicher Climate Stress Laboratory and Ann C. Smigocki Molecular Plant Pathology Laboratory
Cytokinins as major plant growth regulators are involved in a wide range of physiological and biochemical processes. They upregulate secondary metabolic pathways, products of which have insecticidal and antimicrobial properties. In sugarbeet taproots, increased cytokinin levels have been correlated with cambial initiation and rapid cell division periods. To increase endogenous cytokinins in sugarbeet, a bacterial cytokinin biosynthesis gene, ipt, was fused to a woundinducible proteinase inhibitor II (Pin2) or a tuber-specific patatin (Pa) gene promotor from potato. Agrobacterium-mediated cotyledon transformation or particle bombardment of embryogenic callus yielded one Pin2-ipt and two Pa-ipt plants. Putative transformants were identified by PCR and placed on root inducing medium. To compensate for the elevated cytokinin levels, two previously obtained Pa - ipt shoots were exposed to high auxin concentrations (50 mg IBA/ml) for a 24 hour period for root initiation as compared to continuous $3 \mathrm{mg} \mathrm{IBA} / \mathrm{ml}$ for normal shoots. Pa-ipt shoots rooted in $4-8$ weeks in comparison to 2 weeks for controls. One of the transformants appeared normal except for increased adventitious shoot development and the other exhibited dark green leaves and reduced apical dominance, all typical cytokinin effects. Approximately a 3 fold increase in sucrose levels was observed in the dark green leaves but the taproot levels were unchanged. Levels of the cytokinins zeatin and zeatinriboside in leaves and taproots of the Pa-ipt transformants were up to 20 and 2 times higher, respectively, than in normal plants. Analyses of the transgenic plants for resistance to the sugarbeet root maggot and sucrose content are in progress.

ANALYSIS OF DIGESTIVE PROTEINASES FROM MIDGUTS OF THE ALFALFA WEEVIL HYPERA POSTICA (COLEOPTERA: CURCULIONIDAE) AND CLONING OF CYSTEINE PROTEINASE GENES Stephen E. Wilhite, Ann C. Smigocki, and Thomas C. Elden. USDA, ARS, Plant Sciences Institute, Soybean and Alfalfa Research Laboratory, Beltsville, MD, 20705
Insects rely on a variety of midgut proteinases to catalyze the release of free amino acids from dietary protein and thereby provide nutrients essential for normal growth and development. A potential for insect control has been demonstrated in laboratory studies involving the expression of proteinase inhibitor (P1) genes in transgenic plants. However, insects have revealed an ability to compensate for lost proteinolytic activity by enhancing production of proteinases insensitive to the introduced PI. Thus, there is a need to characterize the individual proteolytic enzymes within an insect in order to pursue a directed control strategy in which each proteolytic activity is specifically targeted for inhibition. Proteinases isolated from dissected midguts of Hypera postica are being analyzed using gelatin-containing SDS-PAGE and class-specific PIs. A parallel approach is being pursued to clone cysteine proteinase (CP) genes, as previous studies have indicated that CPs play a prominent role in the digestive ability of this insect. DNA primer mixtures corresponding to evolutionarily conserved regions of amino acids within CPs were synthesized for use in PCR. Templates included DNA from H. postica, as well as DNA from the dipteran insects Tetanops myopaeformis (sugarbeet root maggot) and Drosophila melanogaster (fruit fly) as positive control. Fragments of about 500 bp have been amplified from each of these templates. Subcloning followed by selection, propagation, and sequencing of individual clones derived from each template can be expected to reveal one or more cysteine proteinase genes for each organism. These genes will ultimately serve as tools to express recombinant CP for selecting potent inhibitors from a library of novel CP inhibitors.

CLONING OF CYSTEINE PROTEINASE GENES FROM THE ALFALFA WEEVIL HYPERA POSTICA (COLEOPTERA: CURCULIONIDAE) Stephen E. Wilhite, Ann C. Smigocki, and Thomas C. Elden. USDA, ARS, Plant Sciences Institute, Soybean and Alfalfa Research Laboratory, Beltsville, MD, 20705
Digestive proteinases of insects catalyze the release of free amino acids from dietary protein and thereby provide a supply of nutrients essential for normal growth and development. A possible approach to insect control is to express proteinase inhibitor (PI) genes in transgenic plants. Plant PIs have been shown in artificial feeding bioassays, as well as in transgenic plants, to inhibit gut proteinases and interfere with normal growth and development of insects. However, effective protection is likely to require multiple PIs directed against individual proteolytic activities in the insect gut. This problem is apparent in the growing number of instances in which insects exposed to a particular PI compensate by producing proteinases insensitive to that PI. Thus, the objective here is to identify multiple proteinase genes that may be involved in digestion. This will allow us to pursue an insect control strategy in which specific gut proteinases are targeted by PIs that are both specific and potent. To amplify cysteine proteinase genes, degenerate primer mixtures corresponding to evolutionarily conserved regions of amino acids within the enzymes were synthesized. These primers were used in PCR to amplify the corresponding region of the proteinase genes from a genomic DNA template. Templates included DNA from Hypera postica, as well as DNA from the dipteran insects Tetanops myopaeformis (sugarbeet root maggot) and Drosophila melanogaster (fruit fly) as positive control. Fragments of about 500bp have been amplified from each of these templates. Subcloning followed by selection, propagation, and sequencing of individual clones derived from each template can be expected to reveal one or more cysteine proteinase genes for each organism. Results will be presented.

CLONING AND EXPRESSION ANALYSIS OF A WOUND-INDUCIBLE CYTOCHROME P450 FROM HORNWORM-INFESTED AND MECHANICALLY WOUNDED LEAVES OF IPT-TRANSFORMED NICOTIANA
 PLUMBAGINIFOLIA. Cesar V. Mujer and Ann C. Smigocki. Molecular Plant Pathology Laboratory, USDA-ARS, BARC-West, Beltsville, MD 20705

Cytochrome P450 monooxygenases heme-containing enzymes that mediate a wide range of oxidative reactions involved in the biosynthetic, catabolic and detoxification pathways of all living organisms. Plant P450s catalyze the synthesis of a variety of secondary products, some of which are shown to inhibit insects, pathogens and animal herbivores. Using RT-PCR of total RNA from Nicotiana plumbaginifolia transformed with the isopentenyl transferase (ipt) gene that is fused to a wound-inducible promoter, two full length clones of P450 were isolated and sequenced. One of the clones is bigger than the other by 81 nucleotides and its predicted 508 amino acid sequence has 44% identity to Catharanthus roseus P450 (CYP72), a protein exhibiting geraniol 10-hydroxylase activity. When in vitro transcribed and translated, two 35 S -met or 3 H -leu labeled polypeptides with molecular masses of 53 and 34 kDa were obtained using clones 1 and 2 , respectively. The expression of P450 is regulated by light and darkness. Northern blot analysis revealed that transcript accumulation was maximum during mid-day but was lowest at night. Hornworm (Manduca sexta) feeding and mechanical wounding disrupted this rhythm resulting in an elevated level of expression at night in the wounded leaf. The level of induction was 4 -to 6 - fold higher in ipt-transformed leaves after $6-12 \mathrm{hr}$ of mechanical wounding in comparison to $2-$ to -3.5 fold induction from wounded but untransformed leaves. The response to insect feeding and mechanical wounding was systemic and was detected maximally in the leaf immediately above the damaged leaf. P450 transcripts were not detected in flower buds, flowers and seed pods. The role of P450 in plant defense responses will be explored by transforming plants with various P450 sense and antisense constructs.

MOLECULAR CLONLNG AND CHARACTERIZATION OF A WOUND. INDUCIBLE CYTOCHROME P450 FROM NICOTIANA PLUMBAGINIFOLIA. TRANSFORMED WITH THE BACTERIAL ISOPENTENYL TRANSFERASE GENE. Cesar V. Mujer and Ann C. Smigocki. Plant Sciences Institute, Molecular Plant Pathology Laboratory, USDA-ARS, Beltsville, MD 20705
Plant cytochrome P450 monooxygenases are heme-containing enzymes that participate in the synthesis of a wide variety of secondary products, some of which are shown to inhibit insects, pathogens and animal herbivores. Using reverse transcription-polymerase chain reaction (RTPCR) of poly $(A)^{+}$RNA from Nicotiana plumbaginifolia containing the potato inhibitor woundinducible promoter-isopentenyl transferase gene construct (PI-II-ipt), two full length clones of P 450 , designated as pNpl 1 and $\mathrm{pNpl2}$, were isolated and sequenced. Npll has an open reading frame of 1524 nucleotides corresponding to 508 amino acids and its deduced amino acid sequence has 44% identity to Catharanthus roseus P450 (CYP72). PNpl2 is similar to pNpl1 except for 81 nucleotides deletion and an internal stop codon, and so possibly represents a pseudogene. When in vitro transcribed and translated, two ${ }^{35} \mathrm{~S}$-methionine labeled polypeptides with molecular masses of 56 and 34 kDa were synthesized corresponding to the products of pNpl 1 and pNpl 2 , respectively. The complete coding region of pNpll was amplified by PCR and used to estimate the copy number of P450 genes and to study the expression of P450 in PI-II-ipt-transformed and normal N. plumbaginifolia. Southern blot hybridization of genomic DNA indicated that P450 exists as multiple copies of the same gene. The expression of P450 is regulated by light and darkness. Northern blot analysis revealed that transcript accumulation was maximum during the day but was lowest at night. When infested with tomato hornworm (Manduca sexta) larvae or mechanically wounded, this rhythm was disrupted resulting in an elevated level of expression at night in the wounded leaves. The level of induction was 4 -to 6 - fold higher in PI-II-ipt-transformed leaves after $6-12 \mathrm{hr}$ of mechanical wounding in comparison to 2- to -3.5 fold induction from wounded but untransformed leaves. The response to feeding insect larvae was systemic and was detected maximally in the leaf immediately above the damaged leaf. P450 transcripts were not detected in flower buds, flowers and seed pods. Polyclonal antibodies were raised against a cocktail of three synthetic peptides whose sequences corresponded to internal regions of the deduced P450 protein exhibiting high antigenic indices. Preliminary western blot analysis of cell-free extracts indicated the presence of 58.8 kDa P 450 proteins in tobacco, periwinkle, sugarbeet and soybean leaves. The modulation of P450 gene expression by cytokinins and the possible role of P 450 in plant defense responses are discussed.

ISOLATION OF A CYSTEINE PROTEINASE cDNA FROM THE ALFALFA WEEVIL AND ANALYSIS OF ITS MIDGUT PROTEINASES Stephen E. Wilhitel,

 Ann C. Smigocki2, and Thomas C. Elden1. USDA, ARS, Plant Sciences Institute, Soybean and Alfalfa Research Laboratory1 and Molecular Plant Pathology Laboratory2, Beltsville, MD 20705 Insects rely on a variety of midgut proteinases to catalyze the release of free amino acids from dietary protein and thereby provide nutrients essential for normal growth and development. A potential for insect control has been demonstrated in laboratory studies involving the expression of proteinase inhibitor (PI) genes in transgenic plants. However, insects have revealed an ability to compensate for lost proteinolytic activity by enhancing production of proteinases insensitive to the introduced PI. Thus, there is a need to characterize the individual proteolytic enzymes within an insect in order to pursue a directed control strategy in which each proteolytic activity is specifically targeted for inhibition. We are conducting both biochemical and molecular cloning experiments to elucidate the digestive proteinases of Hypera postica. Gelatin-containing SDS-PAGE of weevil midgut extracts has revealed one major and several minor size-classes of proteolytic activity. The large majority ($70-80 \%$) of proteolytic activity appears to result from cysteine proteinases in the midgut extract, as revealed by inhibition of the enzymatic activity with class-specific protease inhibitors. Of interest from the standpoint of pest control, the recombinant rice inhibitors OCI and OCII were similarly effective at inhibiting proteolytic activity as the potent, irreversible cysteine proteinase inhibitor $\mathrm{E}-64$. One cysteine proteinase clone has been identified in a random sampling of 10 lambda clones from an H. postica midgut-specific cDNA library. DNA sequencing of theinsert has revealed a full-length cDNA (hcpl) encoding a predicted protein (HCP1) of 324 amino acids. This putative digestive enzyme is highly similar to cathepsin L-type cysteine proteases, and is predicted to play an important role in the assimilation of dietary protein in the alfalfa weevil.

WOUND-INDUCIBLE CYTOCHROME P450 FROM NICOTIANA PLUMBAGINIFOLIA TRANSFORMED WITH THE IPT GENE INVOLVED IN CYTOKININ BIOSYNTHESIS Cesar V. Mujer and Ann C. Smigocki Molecular Plant Pathology Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA.

Two cDNA clones with high sequence similarity to cytochrome P450 monooxygenases were isolated using reverse transcription-polymerase chain reaction (RT-PCR) of poly(A) ${ }^{+}$RNA from Nicotiana plumbaginifolia transformed with a wound inducible cytokinin biosynthesis gene construct (PI-II-ipt). CYP72A2 has an open reading frame of 1524 nucleotides and its deduced 508 amino acid sequence has 45\% identity to Catharanthus roseus P450 (CYP72A1). The other clone ($n p l 2$) is similar to CYP72A2 except for an 82-nucleotide deletion and an internal stop codon. In vitro transcription and translation of CYP72A2 and npl2 generated two ${ }^{35}$ S-methionine labeled polypeptides of 56 and 34 kDa , respectively. CYP72A2 was shown to be a member of a small gene family and its transcript levels increased in response to mechanical wounding or feeding by tobacco hornworm (Manduca sexta) larvae. In PI-II-ipt-transformed leaves, a 4.5 - to 6 -fold induction was observed at 6 to 12 h after mechanical wounding in comparison to a 2 - to 3.5 -fold induction in wounded, untransformed leaves. This was a systemic response but maximum induction occurred sooner in the transgenic plants. Using polyclonal antibodies raised against three internal regions of the deduced CYP72A2 protein, a 58.8 kDa polypeptide was detected in leaves of N. plumbaginifolia, tobacco, periwinkle, sugarbeet and soybean. The modulation of CYP72A2 expression by cytokinins and the possible role of P450 in plant defense responses are discussed.

SYSTEMIC INDUCTION OF CYTOCHROME P450 GENE IN IPTTRANSFORMED NICOTIANA PLUMBAGINIFOLIA BY HORNWORM (MANDUCA SEXTA) FEEDING AND MECHANICAL WOUNDING Cesar V. Mujer

 and Ann C. Smigocki. USDA, ARS, Plant Sciences Institute, Molecular Plant Pathology Laboratory, Beltsville, MD, 20705Cytochrome P450 monooxygenases are heme dependent mixed function oxidases that utilize NADPH or NADH and molecular oxygen to produce functionalized organic products. In higher plants, P450 monooxygenases are involved not only in the biosynthesis of secondary metabolites but also in the metabolism of xenobiotics including herbicides and insecticides. Using 5'RACE, the cloning and reconstruction of the full length sequence of a P450 cDNA clone from N. plumbaginifolia has been reported (LaRosa and Smigocki, 1996). This cDNA clone hybridized to an mRNA transcript whose abundance rose moderately in N. plumbaginifolia containing a heatshock inducible isopentenyl transferase ($i p t$) gene construct. In this study, we investigated the effect of hornworm feeding and mechanical wounding on P450 gene expression using tobacco plants containing a wound inducible ipt gene construct. Northem blot analysis showed a 4- to 6fold higher levels of induction after 6 to 12 hr of mechanical wounding in ipt-transformed leaves at various stages of development in comparison to a 2 - to 3.5 -fold induction from wounded but untransformed leaves. Leaves infested with third instar hornworm (Manduca sexta) larvae elicited a response similar to that caused by mechanical wounding. The response to both treatments was systemic and was detected maximally in the leaf immediately above the damaged leaf. P450 transcripts were not detected in flower buds, flowers and seed pods. The possible role of P450 in plant defense will be explored by transforming N. plumbaginifolia with a wound inducible-P450 antisense constructs.

Gene Transfer to Optimize the Sucrose Storage Capacity of the

Sugarbeet Taproot

BSDF Project 810

Ann C. Smigocki

A number of studies have concluded that in order to optimize the sucrose storage capacity of the sugarbeet taproot its structure would have to be modified to contain more vascular zones with shorter distances between the phloem and the storage vacuoles. Changes in phytohormone profiles of sugarbeet taproots between sowing and harvest have been determined and related to initiation of cambia, cell division of the cambia and rapid cell expansion stages in root development. It is well established that cytokinins induce cell division and in taproot-derived sugarbeet suspension cultures, cytokinin levels were shown to peak just prior to cytokinesis. These results suggest that higher cytokinin levels in the taproot will lead to increased cell division, additional vascular rings and increased sucrose yield. In addition, cytokinins have been identified as having functional significance in the control of assimilate movement in plants, particularly by altering phloem unloading, sink initiation, and sink strength and capacity. Since field applications of phytohormones are of limited value due to high costs and rapid degradation, we have genetically engineered sugarbeets for production of high cytokinin levels in the taproot. To increase endogenous cytokinins in the taproot, a bacterial cytokinin biosynthesis gene ipt was fused to a tuber-specific promoter from the patatin gene of potato and introduced into sugarbeet using an Agrobacterium-mediated cotyledon transformation method or particle bombardment of embryogenic hypocotyl callus. Regenerated shoots required high auxin concentrations for rooting, presumably to compensate for the elevated cytokinin levels. Transformants appeared normal except for more adventitious shoot development or exhibited reduced apcial dominance and dark green leaves, all typical of cytokinin effects. Cytokinin levels in taproots and leaves were up to 2
and 17 times higher, respectively. In one of these transgenic plants, leaf sucrose levels were 9 times higher than in the control. Surcose concentrations in the taproots were 20 to 50% higher. These preliminary results support the hypothesis that higher cytokinin levels increase sucrose accumulation in leaves and taproots of transgenic plants.

Engineering sugarbeets with multiple proteinase inhibitor genes for enhanced

tolerance to the sugarbeet root maggot

BSDF Project 811

Ann C. Smigocki

One of the most devastating pest of sugarbeet in the U.S. is the root maggot (Tetanops myopaeformis Roder). Losses can be as high as 23% in infested fields and are speculated to increase in the next few years due to the anticipated removal of all chemical pesticides effective against the maggot from EPA approved registrations. Currently no biological control measures are available. Introduction of multiple resistance genes into transgenic plants will most likely prove to be the most effective and perhaps sustained means of controlling diseases and insect infestations. One approach to insect control is to express proteinase inhibitor genes in transgenic plants to specifically target the insect's digestive proteases leading to inhibition of catalysis of dietary proteins essential for normal insect growth and development. To target the sugarbeet root maggot, we are in the process of determining the nature of the maggot's digestive proteases. Extracts of midguts excised from feeding second instar larvae were analyzed for specific protease classes using an inhibition assay. Most of the gut protease activity was inhibited by proteinase inhibitors specific for two classes of proteases. Further research is in progress to identify specific proteinase inhibitor genes for introduction into sugarbeet.

We have designed degenerative oligonucleotide primer mixtures from alignments of
proteases from various organisms and have PCR amplified DNA fragments from the SBRM genomic DNA that are highly homologous at the amino acid level to the digestive proteases from two Dipteran insects, the flesh and fruit fly. In a collaborative effort with Steve Gleddie (Agriculture and Agri-Food Canada, Ottawa, Ontario), our goal is to screen phage display libraries of mutated proteinase inhibitor genes to select the most effective inhibitor specific for the cloned maggot proteases. Clones of the most potent inhibitors will then be reconstructed for optimal expression and introduced alone or in pairs into sugarbeet.

Sugar Beet Bioengineering for Cercospora beticola Resistance and Decreased Susceptibility to Other Microbial Plant Pathogens

L. David Kuykendall, Molecular Plant Pathology Laboratory, Beltsville, MD

Summary

A strategy of using a fungal gene for cercosporin transport (cfp) for enhancing sugar beet resistance to Cercospora leaf spot disease was proposed. The cfp gene and it's nucleotide sequence were obtained from Greg Upchurch at North Carolina State University, Raleigh, NC. Plasmid X, which carries cfp, was transformed into E. coli HB101 in order to increase the quantity of DNA available for in vitro manipulations. Restriction enzyme digestion and agarose gel electrophoresis were used to verify the $c f p$ gene. Suitable plant promoter sequences are being used to construct a "fused" gene(s) that will be adequately expressed in sugar beet leaves and which is nonproprietary so that new transgenic plants made with these constructs can be freely released as germplasm for use by breeders.

Transgenic sugar beet plants carrying introduced genes specifying antimicrobial peptides were examined under axenic conditions, free of possible complications since other microbes are absent, for their ability to inhibit the growth of Cercospora beticola, the microorganism responsible for leafspot disease in sugar beet. Transgenic clone OOT has recently been identified as a potential candidate that may adequately express the production of a potent antimicrobial peptide. This novel genotype has a barley thionin gene and the tobacco osmotin gene both under the wound-inducible control of the osmotin promoter. Plants are currently being grown for greenhouse evaluation. In vitro analyses were complicated by the fact that most of the new sugar beet genotypes as well as the parental germplasm, REL-1, stimulated the growth of C. beticola on chemically defined medium and other artificial conditions. Perhaps it is not surprising that axenic sugar beet shoot segments supply phytopathogenic fungi with growth factors.

Rhizosphere bacteria from North Dakota, obtained from healthy sugar beets by John Eide and Garry Smith of the Fargo Sugar Beet Lab, are being purified and examined for their potential in biocontrol of sugar beet pathogens and as a new source of transgenes that could confer leafspot disease resistance by producing specific antimicrobial products. These interesting soil bacteria, which could also have potential as plant growth-promoting rhizobacteria (PGPR), are also being microbiologically characterized.

In vitro studies

Thorough examination of all the available data obtained in various in vitro studies conducted this year revealed that transgenic clone OOT potentially can inhibit Cercospora beticola. This novel genotype is deserving of further investigation and so experiments are planned using clonal plants propogated in the greenhouse.

A series of in vitro pathogen/ sugar beet interaction studies were done and the cocultivation of Cercospora beticola with Beta vulgaris genotypes produced some interesting results which were interpreted as indicative of variable growth inhibition of Cercospora by selected novel genotypes. Apparent fungal inhibition was evident when the distance from fungal pathogen to shoot segment was less than 1.0 cm .

Results obtained with plates on which two axenic shoot segments were placed, one directly inoculated with Cercospora and one uninoculated, showed that the Cercospora fungi grew rapidly and, within 7 days of incubation, covered the entire inoculated shoot segment.

Interestingly, one novel sugar beet genotype, namely the Osm-osm transgenic, was evidently a very favorable substrate for the growth of Cercospora since leaf segments of this genotype were covered entirely by white fungal mycelia within five days of incubation compared with a 7 -day incubation period required for similar fungal growth on leaf squares from axenic shoot cultures of the other transgenic sugar beet genotypes or from those of the parental genotype.

Also there was stimulation of the growth of Cercospora by axenic sugar beet leaf pieces as a factor complicating the interpretation of in vitro analyses of growth inhibition. When four $3 \times 7 \mathrm{~mm}$ leaf segments were placed at equal distances of about 3.5 cm from the point of Cercospora beticola inoculation, they stimulated the fungus to grow to a diameter of about 3.9 cm in 14 days, a large increase over the colony size of approximately 1.8 cm on the control plate with Cercospora inoculation but without the presence of any axenic sugar beet leaf segments.

Axenic, excised sugar beet leaf segments evidently release into the medium diffusible substances that dramatically stimulate Cercospora growth. This phenomenon seriously complicated our attempts to test transgenic sugar beets, which carried introduced genes specifying the production of antimicrobial peptides, for their ability to inhibit Cercospora.

Without the presence of sugar beet tissues, pure cultures of the fungal pathogen Cercospora beticola developed on two very different culture media at different growth rates. All four single-spore C. beticola isolates obtained from Earl Ruppel in Fort Collins, CO, grew more rapidly and extensively on nutrient-rich potato dextrose agar (PDA) than on the chemically defined tissue culture medium (TCM) (Table 1). Unlike PDA, TCM does not contain all of the nutrients needed to support good growth of Cercospora. Cercospora is a relatively slowgrowing fungus and it has a requirement for a number of nutrients. It is not unusual for a plant pathogen to require a variety of nutritional or growth factors since Cercospora rosicola is known to require a large number of the amino acids and vitamins.

Table 1: Colony Diameter in Centimeters of Pure Cultures of Four Cercospora beticola Strains After Two Weeks Incubation on Two Very Different Media*

Cercospora	PDA	TCM
Strain	3.8	1.0
C1	4.4	1.5
C2	4.4	1.7
H1-12	4.1	1.2

* Values are the means of four replicates.

Bill Belknap of the Albany Plant Gene Expression Center and Jeff Buyer of the Beltsville Soil Microbial Systems Lab have been asked to collaborate on gene fusions and the characterization of potential biocontrol bacteria originating in the rhizospheres of healthy sugar beets in production fields, respectively.

Dr. Kuykendall wishes to sincerely thank the BSDF for their support (\#830).

Publications

Kuykendall, L.D. and Ann C. Smigocki. 1999. Cercospora beticola interactions with axenic sugar beet cultures. Preceedings of the American Society of Sugar Beet Technologists Biennial Meeting (in press).

Boland, G.T. and L. D. Kuykendall (Eds.) 1998. Plant-Microbe Interactions and Biological Control, Marcel Dekker, Inc., New York, 464 pages.

BEET SUGAR DEVILLOPMENT FOUNDATION BOARD OF DIRECTORS

The Amalgamated Sugar Company, LLC
Ralph C. Burton
Dennis D. Costesso
American Crystal Sugar Company
David A. Walden
James W. Dudley Betaseed, Incorporated
E. Joseph Dahmer
Florimond Desprez
Hossein Robani
Holly Sugar Corporation
Calvin K. Jones
Robert W. Strickland
Michigan Sugar Company
Herbert C. Wilson
Robert D. Braem
Minn-Dak Farmers Cooperative
Steven M. Caspers
Tom Knudsen
Monitor Sugar Company
Chris D. Rhoten
Paul D. Pfenninger
Novartis Seeds, Incorporated
Gerald M. Simantel
Rogers Sugar Incorporated
Douglas J. Emek
Seedex, Incorporated
Akio Suzuki
Seed Systems, Incorporated
Mark Hughes
Southern Minnesota Beet Sugar Cooperative
Jimmy N. Widner
Mark Suhr
Spreckels Sugar Company
Norman F. Rianda
Norman D. Bates
D. J. van der Have, B.V.
K. van der Woude
The Western Sugar Company
Pamela S. Thomas
J. Kent Wimmer

[^0]: ${ }^{1}$ Original progeny family ($\mathrm{S}_{1}=$ family from selfed plant. $\mathrm{HS}=$ half sib).
 ${ }^{2}$ Crosses and backcrosses to CMS source.
 ${ }^{3}$ S1 made on unbagged plant in increase plot, therefore, could be mixed S1 and HS.

[^1]: NOTES :
 END USE (Primary Use of Plant): 1 = chard; $2=$ DDR-like; $3=$ DDR, chard, spinach; $4=$ fodder; $5=$ sugar; $6=$ wild beet type; $7=$ mixed.

 HABIT (general growth habit):
 4 = intermediate reading between
 HABIT (general growth habit): $1=$ erect; $2=$ intermediate reading between 1 prostrate (no more than 6 " high)
 (Tetuuerq) $99=2: \% 00 T$ (Tenuue)
 ROOT COLOR (external color of root): $1=$ white; $2=$ yellow; $3=$ orange; $4=$ red.
 RHIZOMANIA: $0=$ immune; $1=$ very resistant; $3=$ resistant; $5=$ intermediate; $7=$ susceptible; $9=$ highly susceptible.

 POWDERY MILDEW: rated 0 to 9 , where $9=$ highly susceptible.

[^2]: 18 entries x 4 replications, RCB

[^3]: 78 entries $x 4$ replications, RCB 1-row plots, 22 ft . long

[^4]: R781－43 R776－89－5 R740

[^5]: Percent in Classes is the transformed value (arcsin-square root)
 Mean = Experiment Mean;
 Sus. = Susceptible Check;
 Res. = Resistant Check (FC703);
 H Res. = Highly Resistant Check (FC705/1)

[^6]: Figure 2 Weather Data was received from Colorado's CoAgMet system, which is electronically reported, and can be accessed off of the Colorado Climate Center Webstite which can be reached at the following URL - http://ulysses.atmos.colostate.edu/ The Lucerne weather station is located one quarter mile southwest of Lucerne, Colorado (Lat $=40.4753$, Lon $=104.7075$, elevation $=4750$). Our Windsor plots are located about 10 miles west of Lucerne (about Latitude $=40.2730$, Longitude $=104.5500$, elevation $=4800$). The Cercospora leaf spot nursery was planted on day 119 (April 29), inoculated on days 187 \& 194 (July 6 \& 13) and evaluated on days 237, 246, \& 251 (August 25, September $3 \& 8$).

[^7]: ${ }^{1}$ Disease Index is based on a scale of 0 (=healthy) to 7 (= plant dead).
 ${ }^{2}$ Percent of healthy roots (disease classes 0 and 1 combined).
 ${ }^{3}$ Percent of diseased roots likely to be taken for processing (disease classes 0 through 3 combined).
 ${ }^{4}$ Percentages were transformed to arcsin-square roots to normalize the data for analyzes.

[^8]: ${ }^{1}$ Disease Index is based on a scale of 0 (=healthy) to 7 (= plant dead).
 ${ }^{2}$ Percent of healthy roots (disease classes 0 and 1 combined).
 ${ }^{3}$ Percent of diseased roots likely to be taken for processing (disease classes 0 through 3 combined).
 ${ }^{4}$ Percentages were transformed to arcsin-square roots to normalize the data for analyzes.
 ${ }^{5}$ Because there were unequal cell sizes (missing plots) an LSD is not an appropriate comparison.

[^9]: Percent healthy plants is derived from the number of plants within the 1 and 2 classes divided by the total number of roots rated for an accession. ${ }^{2}$ Disease index (DI) produced by the multiplication of the raw data by $7 / 4$ for conversion to the $0-7$ scale.
 ${ }^{3}$ Highest and lowest numbers over all accessions rated for the given year in the Fort Collins nursery are presented in parentheses.

[^10]: ${ }^{1}$ A ranking of 1 was assigned to the test within a replication that detected the highest percentage of positive samples. Rankings increased numerically as the percentage of positive samples indicated by a test decreased
 ${ }^{2}$ Commercially available BNYVV ELISA reagents.
 ${ }^{3}$-whl indicates antiserum developed to whole virus particles; -den indicates antiserum developed to denatured capsid.

